Sunquakes Reveal The Solar Furnace
Most people are familiar with the fact that sensitive instruments known as seismographs can detect earthquakes taking place many hundreds or thousands of miles away. By studying the waves from these tremors, scientists can find out about the conditions deep inside our rocky planet.
In the same way, astronomers are now able to measure millions of sound waves that propagate throughout the Sun, causing it to vibrate or ring like a bell. This technique, known as helioseismology, is the solar equivalent of terrestrial seismology.
On Monday 7 April, Dr. John Leibacher (U.S. National Solar Observatory) will highlight recent results from helioseismology studies during a presentation to the UK/Ireland Solar Physics Meeting in Dublin. These will include new views of the rapidly changing “sub-surface solar weather” and the far side of the Sun, as well as prospects for seeing finer and deeper details within the Sun and other stars.
“Unimaginable 25 years ago, helioseismology today allows us to ‘see’ into the otherwise invisible interior of the Sun,” said Dr. Leibacher. “This has enabled us to overthrow some theories, corroborate others, and pose many more new questions as we finally get a glimpse of how things work.
“We are now testing fundamental theories of physics and astrophysics, substantially advancing our knowledge of the Sun’s structure and dynamics,” he added. “We are also beginning to measure significant temporal variations ranging from the scale of the eleven-year solar sunspot cycle right down to ‘solar weather’ variations on the scale of a day.
“Recent observations have been producing some remarkable results on flows of gas that we can image below the surface of the Sun. For example, we are now seeing strong subsurface winds flowing into groups of sunspots, which change from day to day. These sunspots are the sources of the strong magnetic fields which give rise to explosions on the surface. These, in turn, produce all sorts of terrestrial effects, from the aurora borealis, to fluctuations in navigational satellite signals, to power outages, and in the longer term they may influence Earth’s climate.
“With the discovery of these flows, we may be getting close to understanding the real nature of sunspots, with the tantalising prospect of being able to predict their occurrence. We can already utilise helioseismic imaging to detect sunspot groups on the far side of the Sun, before they rotate onto the visible hemisphere.
“It has been an exhilarating ride and we are excited to see what the next turn will reveal,” he said.
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…