Computers probe how giant planets formed
Nearly five billion years ago, the giant gaseous planets Jupiter and Saturn formed, apparently in radically different ways.So says a scientist at the Laboratory who created exhaustive computer models based on experiments in which the element hydrogen was shocked to pressures nearly as great as those found inside the two planets.
Working with a French colleague, Didier Saumon of Material Science (X-7) created models establishing that heavy elements are concentrated in Saturns massive core, while those same elements are mixed throughout Jupiter, with very little or no central core at all. The study, published in this weeks Astrophysical Journal, showed that refractory elements such as iron, silicon, carbon, nitrogen and oxygen are concentrated in Saturns core, but are diffused in Jupiter, leading to a hypothesis that they were formed through different processes.
Saumon collected data from several recent shock compression experiments that have showed how hydrogen behaves at pressures a million times greater than atmospheric pressure, approaching those present in the gas giants. These experiments- performed over the past several years at U.S. national labs and in Russia- have for the first time permitted accurate measurements of the so-called equation of state of simple fluids, such as hydrogen, within the high-pressure and high-density realm where ionization occurs for deuterium, the isotope made of a hydrogen atom with an additional neutron.
Working with T. Guillot of the Observatoire de la Cote dAzur, France, Saumon developed about 50,000 different models of the internal structures of the two giant gaseous planets that included every possible variation permitted by astrophysical observations and laboratory experiments.
“Some data from earlier planetary probes gave us indirect information about what takes place inside Saturn and Jupiter, and now were hoping to learn more from the Cassini mission that just arrived in Saturns orbit,” Saumon said. “We selected only the computer models that fit the planetary observations.”
Jupiter, Saturn and the other giant planets are made up of gases, like the sun. The two planets are about 70 percent hydrogen by mass, with the rest mostly helium and small amounts of heavier elements. Therefore, their interior structures were hard to calculate because hydrogens equation of state at high pressures wasnt well understood.
Saumon and Guillot constrained their computer models with data from the deuterium experiments, thereby reducing previous uncertainties for the equation of state of hydrogen, which is the central ingredient needed to improve models of the structures of the planets and how they formed.
“We tried to include every possible variation that might be allowed by the experimental data on shock compression of deuterium,” Saumon explained.
By estimating the total amount of the heavy elements and their distribution inside Jupiter and Saturn, the models provide a better picture of how the planets formed through the accretion of hydrogen, helium and solid elements from the nebula that swirled around the sun billions of years ago.
“Theres been general agreement that the cores of Saturn and Jupiter are different,” Saumon said. “Whats new here is how exhaustive these models are. Weve managed to eliminate or quantify many of the uncertainties, so we have much better confidence in the range within which the actual data will fall for hydrogen, and therefore for the refractory metals and other elements.
“Although we cant say our models are precise, we know quite well how imprecise they are,” he added.
These results from the models will help guide measurements to be taken by Cassini and future proposed interplanetary space probes to Jupiter.
Media Contact
More Information:
http://www.lanl.govAll latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…