A simpler design for x-ray detectors
A simplified design for ultra-sensitive X-ray detectors offering more precise materials analysis has been demonstrated at the National Institute of Standards and Technology (NIST). The advance is a step toward making such devices cheaper and easier to produce. Users may eventually include the semiconductor industry, which needs better X-ray detectors to identify and distinguish between nanoscale contaminant particles on silicon wafers.
The new design, described in the Sept. 13 issue of Applied Physics Letters,* is among the latest advances in a decade of NIST research on superconducting “transition edge” sensors (TES). These cryogenic sensors absorb individual X-rays, and then measure the energy of the X-ray by measuring the resulting rise in temperature. The temperature is measured with a bilayer of normal metal and superconducting metal that changes from zero resistance (superconducting) to a slight resistance level in response to the heat from the radiation. By measuring the X-ray energy, NIST researchers can identify the X-ray “fingerprints” of particular elements.
NIST researchers have built systems offering 30 times better X-ray energy resolution than detectors now used in the semiconductor industry and are pursuing further improvements such as novel detector geometries and materials. In contrast to the usual bilayer TES design, the sensor described in the APL paper combines the normal and superconducting metals into one homogenous layer. Manganese impurities are added to a 400-nanometer-thick aluminum film to lower its superconducting transition temperature to 100 milliKelvin. Fabrication requires about half as many steps as the bilayer design. In addition, the new design exhibits less “noise” in the X-ray signals than is typical for TES sensors, as well as a low sensitivity to magnetic fields that could help in building stable instruments.
Media Contact
More Information:
http://www.nist.govAll latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…