Extrasolar Planet News: Superplanet Or Brown Dwarf?

New observations of an oddball planetary system 150 light-years from Earth may force astronomers to rethink the textbook definition of a planet and the accepted idea about how such a body forms. The observations suggest that either some planets are superheavy or that planets can form from disks of gas and dust that encircle not just a single star but two starlike objects.


Two years ago, when astronomers at the Geneva Observatory in Sauverny, Switzerland, reported their findings on the sunlike star HD 202206, nothing seemed out of the ordinary. The team announced that a body at least 17.4 times as heavy as Jupiter orbits the star. The unseen body resides at an average distance from the star of 0.82 times the Earth-sun distance.

The same team, led by Alexandre Correia of the University of Aveiro in Portugal, has now found evidence for a second unseen body orbiting HD 202206. This object is at least 2.4 times as heavy as Jupiter and resides at an average distance from the star of 2.55 times the Earth-sun distance, the researchers report (http://xxx.lanl.gov/abs/ astro-ph/0411512).

According to International Astronomical Union standards, the heavier body is a failed star known as a brown dwarf. By the union’s definition, brown dwarfs range from 13 to about 75 times the mass of Jupiter. That’s heavy enough to burn deuterium at their cores but too light to burn any other nuclear fuel, as bona fide stars do.

In contrast, the lighter object would be classified as a planet, as long as it weighs less than the 13-Jupiter-mass cutoff, as the scientists strongly suspect. In that case, it would have formed from gas and dust coalescing within a disk of material that surrounded the star in its youth. This would make it the first planet known to orbit a pair of objects— goes around the star five times, the outer body goes around exactly once. This particular synchrony has never before been observed in a planetary system. Synchrony keeps objects in an especially powerful gravitational embrace.

Synchrony can’t happen by chance, Correia says. The team suggests that the two bodies are birds of a feather, born in the same way and at the same time.

In that case, the heavier object orbiting HD 202206 wouldn’t be a brown dwarf after all, but the heaviest planet known. If so, the disk from which the two planets arose would have to have been two to four times as heavy as expected, Correia told Science News.

Moreover, if the heavier body is a superplanet, “we have to rethink our definition of what is a brown dwarf and what is a planet,” says Correia. Some objects massive enough to burn deuterium may be brown dwarfs, while others may be planets, he notes. “Somewhat odd systems like this . . . challenge our overall thinking about the formation of giant planets and brown dwarfs,” says Alan P. Boss of the Carnegie Institution of Washington (D.C.).

It’s possible that the heavier object is a brown dwarf but that theorists haven’t yet been clever enough to figure out why it’s in sync with the outer planet, cautions Adam S. Burrows of the University of Arizona in Tucson.

Published in the Nov. 27 issue of Science News, a weekly news magazine.

Media Contact

newswise

More Information:

http://www.sciencenews.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…