Astronomers: ’Bullet star’ shines 350 times brighter than the sun
For decades, scientists have observed that Regulus, the brightest star in the constellation Leo, spins much faster than the sun. But thanks to a powerful new telescopic array, astronomers now know with unprecedented clarity what that means to this massive celestial body.
A group of astronomers, led by Hal McAlister, director of Georgia State Universitys Center for High Angular Resolution Astronomy, have used the centers array of telescopes to detect for the first time Regulus rotationally induced distortions. Scientists have measured the size and shape of the star, the temperature difference between its polar and equatorial regions, and the orientation of its spin axis. The researchers observations of Regulus represent the first scientific output from the CHARA array, which became routinely operational in early 2004.
Most stars rotate sedately about their spin axes, McAlister says. The sun, for example, completes a full rotation in about 24 days, which means its equatorial spin speed is roughly 4,500 miles per hour. Regulus equatorial spin speed is nearly 700,000 miles per hour and its diameter is about five times greater than the suns. Regulus also bulges conspicuously at its equator, a stellar rarity.
Regulus centrifugal force causes it to expand so that its equatorial diameter is one-third larger than its polar diameter. In fact, if Regulus were rotating about 10 percent faster, its outward centrifugal force would exceed the inward pull of gravity and the star would fly apart, says McAlister, CHARAs director and Regents Professor of Astronomy at Georgia State.
Because of its distorted shape, Regulus, a single star, exhibits what is known as “gravity darkening” – the star becomes brighter at its poles than at its equator — a phenomenon previously only detected in binary stars. According to McAlister, the darkening occurs because Regulus is colder at its equator than at its poles. Regulus equatorial bulge diminishes the pull of gravity at the equator, which causes the temperature there to decrease. CHARA researchers have found that the temperature at Regulus poles is 15,100 degrees Celsius, while the equators temperature is only 10,000 Celsius. The temperature variation causes the star to be about five times brighter at its poles than at its equator. Regulus surface is so hot that the star is actually nearly 350 times more luminous than the sun.
CHARA researchers discovered another oddity when they determined the orientation of the stars spin axis, says McAlister. “Were looking at the star essentially equator-on, and the spin axis is tilted about 86 degrees from the north direction in the sky,” he says. “But, curiously enough, the star is moving through space in the same direction its pole is pointing. Regulus is moving like an enormous spinning bullet through space. We have no idea why this is the case.”
Astronomers viewed Regulus using CHARAs telescopes for six weeks last spring to obtain interferometric data that, combined with spectroscopic measurements and theoretical models, created a picture of the star that reveals the effects of its incredibly fast spin. The results will be published this spring in The Astrophysical Journal.
The CHARA array, located atop Mt. Wilson in southern California, is among a handful of new “super” instruments composed of multiple telescopes optically linked to function as a single telescope of enormous size. The array consists of six telescopes, each containing a light-collecting mirror one meter in diameter. The telescopes are arranged in the shape of a “Y,” with the outermost telescopes located about 200 meters from the center of the array.
A precise combination of the light from the individual telescopes allows the CHARA array to behave as if it were a single telescope with a mirror 330 meters across. The array cant show very faint objects detected by telescopes such as the giant 10-meter Keck telescopes in Hawaii, but scientists can see details in brighter objects nearly 100 times sharper than those obtainable using the Keck array. Working at infrared wavelengths, the CHARA array can see details as small as 0.0005 arcseconds. (One arcsecond is 1/3,600 of a degree, equivalent to the angular size of a dime seen from a distance of 2.3 miles.) In addition to Georgia State researchers, the CHARA team includes collaborators from the National Optical Astronomy Observatories in Tucson, Ariz., and NASAs Michelson Science Center at the California Institute of Technology in Pasadena.
The CHARA array was constructed with funding from the National Science Foundation, Georgia State, the W. M. Keck Foundation, and the David and Lucile Packard Foundation. The NSF also has awarded funds for ongoing research at the CHARA array.
Media Contact
More Information:
http://www.chara.gsu.eduAll latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…