Scientists release audio sent by Huygens during Titan descent

Scientists have produced an audio soundbite that captures what the Cassini orbiter heard from Huygens as the probe descended on Titan on Jan. 14.


The sounds may not be music to everyone’s ears, but they’re beautiful, interesting and important to investigators who are reconstructing the probe’s exact position and orientation throughout its parachute dive to Titan’s surface. “The minute-long sound file covers about four hours of real time, from when the Huygens probe deployed its main parachute, down to ground impact two-and-a-half hours later, and then for about another hour on the surface,” said Ralph D. Lorenz of the University of Arizona.

Lorenz, who is an assistant research scientist at UA’s Lunar and Planetary Laboratory and a co-investigator on Huygens’ Surface Science Package, made the sound file from data formatted by Miguel Perez of the European Space Research Technology Centre, Noordwijk, the Netherlands.

To hear the audio file, go to the European Space Agency Website at http://sci.esa.int, or Lorenz’ home page at http://www.lpl.arizona.edu/~rlorenz, or the UA News Services science Web page at http://uanews.org/science

The sound is a tone which has a frequency that depends on the strength of Huygens signal picked up by the Cassini orbiter’s receiver. Signal strength depends on distances and angles between the orbiter and probe.

Huygens’ antenna emits radio energy unevenly, Lorenz said, “like the petals of a flower rather than the smooth shape of a fruit.” The rapid changes in the tone reflect Huygens’ changing orientation caused by its slowing spin rate during descent and its swinging beneath the parachute. “You can hear how the motion becomes slower and steadier later in the descent,” Lorenz said.

The tone changes dramatically at 43 seconds into the minute soundbite, when the decelerating, choppy whistle suddenly becomes a steady whistle, generally rising in pitch. That sound change is when the probe landed. “After landing, the tone is far less rich because the probe has stopped moving. But you still hear slight changes as Cassini flies through the lobes or ’petals’ of the antenna pattern. Just before the end, you hear the weak signal drop out for a moment and then return. Overall, the signal was very robust. Cassini was locked on the Huygens signal throughout descent.”

“Sounds are an interesting way of evaluating one-dimensional data like this,” Lorenz said. “The human ear is very good at detecting small changes in sound.”

Media Contact

Ralph Lorenz EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…