Titan’s Atmosphere Comes from Ammonia, Huygens Data Say
Cassini-Huygens supplied new evidence about why Titan has an atmosphere, making it unique among all solar system moons, a University of Arizona planetary scientist says.
Scientists can infer from Cassini-Huygens results that Titan has ammonia, said Jonathan I. Lunine, an interdisciplinary scientist for the European Space Agencys Huygens probe that landed on Titan last month. “I think whats clear from the data is that Titan has accreted or acquired significant amounts of ammonia, as well as water,” Lunine said. “If ammonia is present, it may be responsible for resurfacing significant parts of Titan.” He predicts that Cassini instruments will find that Titan has a liquid ammonia-and-water layer beneath its hard, water-ice surface. Cassini will see — Cassini radar has likely already seen — places where liquid ammonia-and-water slurry erupted from extremely cold volcanoes and flowed across Titans landscape. Ammonia in the thick mixture released in this way, called “cryovolcanism,” could be the source of molecular nitrogen, the major gas in Titans atmosphere.
Lunine and five other Cassini scientists reported on the latest results from the Cassini-Huygens mission at the American Association for the Advancement of Science meeting in Washington, D.C. today (Feb. 19). Cassini radar imaged a feature that resembles a basaltic flow on Earth when it made its first close pass by Titan in October 2004. Scientists believe that Titan has a rock core, surrounded by an overlying layer of rock-hard water ice. Ammonia in Titans volcanic fluid would lower the freezing point of water, lower the fluids density so it would be about as buoyant as water ice, and increase viscosity to about that of basalt, Lunine said. “The feature seen in the radar data suggests ammonia is at work on Titan in cryovolcanism.”
Both Cassinis Ion Neutral Mass Spectrometer and Huygens Gas Chromatograph Mass Spectrometer (GCMS) sampled Titans atmosphere, covering the uppermost atmosphere down to the surface. But neither detected the non-radiogenic form of argon, said Tobias Owen of the University of Hawaii, a Cassini interdisciplinary scientist and member of the GCMS science team. That suggests that the building blocks, or “planetesimals,” that formed Titan contained nitrogen mostly in the form of ammonia. Titans eccentric, rather than circular, orbit can be explained by the moons subsurface liquid layer, Lunine said. Gabriel Tobie of the University of Nantes (France), Lunine and others will publish an article about it in a forthcoming issue of Icarus.
“One thing that Titan could not have done during its history is to have a liquid layer that then froze over, because during the freezing process, Titans rotation rate would have gone way, way up,” Lunine said. “So either Titan has never had a liquid layer in its interior — which is very hard to countenance, even for a pure water-ice object, because the energy of accretion would have melted water — or that liquid layer has been maintained up until today. And the only way you maintain that liquid layer to the present is have ammonia in the mixture.”
Cassini radar spotted a crater the size of Iowa when it flew within 1,577 kilometers (980 miles) of Titan on Tuesday, Feb. 15. “Its exciting to see a remnant of an impact basin,” said Lunine, who discussed more new radar results that NASA released at an AAAS news briefing today. “Big impact craters on Earth are nice places for getting hydrothermal systems. Maybe Titan has a kind of analogous methanothermal system,” he said.
Radar results that show few impact craters is consistent with very young surfaces. “That means Titans craters are either being obliterated by resurfacing, or they are being buried by organics,” Lunine said. “We dont know which case it is.” Researchers believe that hydrocarbon particles that fill Titans hazy atmosphere fall from the sky and blanket the ground below. If this has occurred throughout Titans history, Titan would have “the biggest hydrocarbon reservoir of any of the solid bodies in the solar system,” Lunine noted. In addition to the question about why Titan has an atmosphere, there are two other great questions about Saturns giant moon, Lunine added.
A second question is how much methane has been destroyed throughout Titans history, and where all that methane comes from. Earth-based and space-based observers have long known that Titans atmosphere contains methane, ethane, acetylene and many other hydrocarbon compounds. Sunlight irreversibly destroys methane in Titans upper atmosphere because the released hydrogen escapes Titans weak gravity, leaving ethane and other hydrocarbons behind. When the Huygens probe warmed Titans damp surface where it landed, its instruments inhaled whiffs of methane. That is solid evidence that methane rain forms the complex network of narrow drainage channels running from brighter highlands to lower, flatter dark areas. Pictures from the UA-led Descent Imager-Spectral Radiometer experiment document Titans fluvial features.
The third question — one that Cassini was not really instrumented to answer — Lunine calls the “astrobiological” question. It is, given that liquid methane and its organic products rain down from Titans stratosphere, how far has organic chemistry progressed on Titans surface? The question is, Lunine said, “To what extent is any possible advanced chemistry at Titans surface at all relevant to prebiotic chemistry that presumably occurred on Earth prior to the time life began?”
The Cassini-Huygens mission is a collaboration between NASA, ESA and ASI, the Italian Space Agency. The Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology in Pasadena, is managing the mission for NASAs Science Mission Directorate, Washington, D.C. JPL designed, developed and assembled the Cassini oribter while ESA operated the Huygens probe.
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…