Researchers at University of Kent investigate glass as a healing material
The University of Kent is collaborating with research teams from the University of Warwick, Imperial College London and University College London (UCL) to develop novel forms of degradable glass for a variety of medical applications, including new bone growth.
The Kent team, led by Bob Newport, Professor of Materials Physics and Director of the Functional Materials Group, has successfully steered a joint bid to the Engineering & Physical Sciences Research Council (EPSRC), which has released almost £1million in new research funding to the partnership.
The aim of the research is to investigate bioactive glasses and their possible use for a variety of medical applications. Bioactive glasses are significantly different to the glass used for the likes of TV screens or bottles; for instance, it is possible in some cases to produce a glass that will actually prompt the body to grow new bone. In all cases, the glass will dissolve safely away when in contact with body fluids such as blood plasma.
Commenting on the project, Bob Newport said: ‘The longer-term possibilities for tissue regeneration, for example, are really quite exciting – and even in the short-term these glasses offer the possibility of surgical implant materials with antibacterial properties and improved bio-compatibility. The challenge we have accepted at Kent is not only to synthesise the new materials, but also to begin to understand their make-up at the level of their constituent atoms.’
Conventionally, a glass is created by casting it in a furnace at high temperature, but there is a chemical technique to manufacture the glass at much lower temperatures from high-purity chemicals. The sol-gel process, as it is called, extends the region of glass forming, so that one can create certain chemical compositions that were previously impossible, and also create some unusual structures such as a high level of porosity. This opens up the possibility of building valuable attributes into the glass: and this is in fact the focus of the new funding. Key to the recently announced research support is the development by the Kent team of a means of using this route to make a series of bio-dissolvable glass materials able to prevent the formation of bacterial infection on surgical implants.
The newly-funded multidisciplinary partnership – involving the synthesis and advanced X-ray and neutron scattering expertise at Kent, a leading solid state Nuclear Magnetic Resonance (NMR) group at Warwick and the Division of Biomaterials and Tissue Engineering at the Eastman Dental Institute at UCL – will allow the scientists to examine the relationship between the structure and in vitro properties of this family of glasses.
In many ways this new project builds upon the long-standing Kent-Warwick research partnership in sol-gel materials, and complements their work on silicate-based bioactive glasses undertaken with the Tissue Engineering Group at Imperial College and aimed at understanding the material’s ability to promote bone regeneration.
Media Contact
More Information:
http://www.kent.ac.ukAll latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Scientists transform blood into regenerative materials
… paving the way for personalized, blood-based, 3D-printed implants. Scientists have created a new ‘biocooperative’ material based on blood, which has shown to successfully repair bones, paving the way for…
A new experimental infection model in flies
…offers a fast and cost-effective way to test drugs. Researchers at the Germans Trias i Pujol Research Institute and Hospital have reinforced their leading role in infectious disease research by…
Material developed with novel stretching properties
KIT researchers produce metamaterial with different extension and compression properties than conventional materials. With this material, the working group headed by Professor Martin Wegener at KIT’s Institute of Applied Physics…