A brand new theory of nerve pulses

Recent research results by two physicists from the Niels Bohr Institute at University of Copenhagen, Thomas Heimburg and Andrew D. Jackson, cast doubt on the generally accepted theory of nerve activity. Their new theory of how nerves function emphasizes the essential role that temperature and pressure play in nerves. This result can contribute to a better understanding of the effect of drugs on nerve activity and will be published in the presitigous American journal Proceedings of the National Academy of Sciences.

It is generally accepted in biology that nerve pulses are governed by so-called protein channels that open and close. According to the classic theory, electrical currents passing through open protein channels create the nerve pulses that are the basis of the brain’s activity and of its communication with muscles. This theory stands unchallenged in textbooks and earned the Nobel Prize in 1963 for its inventors, the British scientists Alan L. Hodgkin and Andrew F. Huxley.

According to Heimburg and Jackson, nerve pulses are more appropriately described as localized sound waves called ”solitons”. Perhaps nerves communicate to a larger extent with pulses of sound than with electrical signals. Scientists at the Niels Bohr Institute have been led to this new view of nerve pulses by new experimental results and by the results of a number of classical experiments not addressed by the Hodgkin-Huxley theory.

Media Contact

Andrew D. Jackson alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

How marine worms regenerate lost body parts

The return of cells to a stem cell-like state as the key to regeneration. Many living organisms are able to regenerate damaged or lost tissue, but why some are particularly…

Nano-scale molecular detective

New on-chip device uses exotic light rays in 2D material to detect molecules. Researchers have developed a highly sensitive detector for identifying molecules via their infrared vibrational “fingerprint”. Published in Nature…

Novel CAR T-cell therapy

… demonstrates efficacy and safety in preclinical models of HER2-positive solid tumors. The p95HER2 protein is found expressed in one third of HER2+ tumors, which represent 4% of all tumors….