Better temperature control improves NIST X-ray detector
Researchers at the National Institute of Standards and Technology (NIST) have developed an improved experimental X-ray detector that could pave the way to a new generation of wide-range, high-resolution trace chemical analysis instruments. In a recently published technical paper*, the researchers described how they used improved temperature-sensing and control systems to detect X-rays across a very broad range of energies (6 keV or more), with pinpoint energy resolution (an uncertainty of only 2 eV).
The detectors ability to distinguish between X-rays with very similar energies should be especially useful to the semiconductor industry for chemical analysis of microscopic circuit features or contaminants. Many types of high-resolution microscopes routinely used in the industry and throughout science produce detailed chemical maps by scanning a surface with electrons and then analyzing the X-rays emitted, which are characteristic of specific elements.
The NIST device, an improved version of its previous microcalorimeter X-ray detector, uses a quantum-level, transition edge sensor (TES). NIST has led development of these sensors for several years. A TES works by measuring the current across a thin metal film that is held just at the knife-edge transition temperature between a superconducting state and normal conductance. A single X-ray photon striking the detector raises the temperature enough to alter the current proportional to the energy of the photon.
TES microcalorimeters offer an unequaled combination of high resolution with detection of a broad energy range, allowing identification of many different chemical elements simultaneously. The two kinds of detectors conventionally used in X-ray microanalysis typically have a resolution of no better than 130 eV, or have a high resolution but only for a very narrow range of energies. TES sensors, however, must be kept at very low temperatures (about 97 millikelvin) for hours at a stretch to collect trace-level data. Tiny changes in temperature would cause previous versions of the instrument to “drift” over time, requiring constant recalibrations. The improved temperature control system for the new detector eliminates this problem, making the system much more practical for a broad range of applications.
Media Contact
More Information:
http://www.nist.govAll latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
How marine worms regenerate lost body parts
The return of cells to a stem cell-like state as the key to regeneration. Many living organisms are able to regenerate damaged or lost tissue, but why some are particularly…
Nano-scale molecular detective
New on-chip device uses exotic light rays in 2D material to detect molecules. Researchers have developed a highly sensitive detector for identifying molecules via their infrared vibrational “fingerprint”. Published in Nature…
Novel CAR T-cell therapy
… demonstrates efficacy and safety in preclinical models of HER2-positive solid tumors. The p95HER2 protein is found expressed in one third of HER2+ tumors, which represent 4% of all tumors….