Moving Closer to the Grand Spiral
VLT Enables Most Accurate Distance Measurement to Spiral Galaxy NGC 300
An international team of astronomers from Chile, Europe and North America [1] is announcing the most accurate distance yet measured to a galaxy beyond our Milky Ways close neighbours. The distance was determined using the brightness variation of a type of stars known as “Cepheid variables”.
The team used the ISAAC near-infrared camera and spectrometer on ESOs 8.2-m VLT Antu telescope to obtain deep images in the near-infrared of three fields in the spiral galaxy NGC 300. Together these fields contain 16 long-period Cepheids. These stars had previously been discovered by the team in a wide-field imaging survey of this galaxy conducted with the Wide Field Imager (WFI) camera on the ESO/MPG 2.2-m telescope at La Silla.
The spiral galaxy NGC 300 is a beautiful representative of its class, a Milky-Way-like member of the prominent Sculptor group of galaxies in the southern constellation of the same name.
The astronomers derive a distance to NGC 300 of a little above 6 million light-years [2]. “The VLT data have led to accurate period-luminosity relations in the J- and K- bands, allowing us to determine the distance to NGC 300 with an unprecedented uncertainty of only three percent”, says Wolfgang Gieren, of the University of Concepcion (Chile) and leader of the team. One of the reasons for this high accuracy was the opportunity to precisely combine the new near-infrared ISAAC data with the previous optical WFI data.
Cepheid variables constitute a key element in the measurement of distances in the Universe. It has been known for many years that the pulsation period of a Cepheid-type star depends on its intrinsic brightness (its “luminosity”). Thus, once its period has been measured, the astronomers can calculate its luminosity. By comparing this to the stars apparent brightness in the sky, they can obtain the distance to the star. This fundamental method has allowed some of the most reliable measurements of distances in the Universe and has been essential for all kinds of astrophysics, from the closest stars to the remotest galaxies.
This first Cepheid distance based on near-infrared imaging with the Very Large Telescope is a milestone in the teams Araucaria Project in which they seek to improve the local calibration of the distance scale with stellar standard candles, including Cepheid variables, by determining precisely how these standard candles depend on a galaxys properties, such as its content in chemical elements and age.
Media Contact
More Information:
http://www.eso.org/outreach/press-rel/pr-2005/pr-20-05.htmlAll latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Improving hurricane modeling with physics-informed machine learning
Algorithm reconstructs wind fields quickly, accurately, and with less observational data. Hurricanes, or tropical cyclones, can be devastating natural disasters, leveling entire cities and claiming hundreds or thousands of lives….
Next step in light microscopy image improvement
New deep learning architecture enables higher efficiency. It is the computational processing of images that reveals the finest details of a sample placed under all kinds of different light microscopes….
New standards in filter technology
‘MiniMax’ aerosol separator impresses with outstanding performance and efficiency. In view of increasing legal and industrial requirements, the development of efficient exhaust gas purification technologies is very important. The need…