Lightning research sparks new discovery

Bringing the study of lightning research into the laboratory

Lightning, a high-voltage discharge that strikes quickly and sometimes fatally, is very difficult to study. A new and surprising finding by Florida Institute of Technology’s Dr. Joseph Dwyer and his team brings the study of lightning research into the laboratory.
Already noted for his discoveries related to x-ray emission from natural and triggered lightning, Dwyer, an associate professor of physics and space sciences, conducted a related experiment recently. He was shocked to find that laboratory-generated sparks make x-rays, too.

“We know that x-rays are made in outer space–in exotic places like the center of the sun and supernovae–but we didn’t think they could be made so easily in the air,” said Dwyer. “The results should allow for the detailed laboratory study of runaway breakdown, a mechanism that may play a role in thunderstorm electrification, lightning initiation and propagation, and terrestrial gamma-ray flashes.”

High voltage sparks are a ubiquitous phenomenon in nature. They occur in a wide range of settings, from a finger touching a doorknob to the massive lightning flashes on Jupiter. Until Dwyer’s discovery, it was believed that such electrical discharges involved only low-energy electrons, not the kind of high-energy electrons that make x-rays.

To conduct their recent experiment, Dwyer and his team; Florida Tech professor of physics and space sciences, Dr. Hamid Rassoul; Florida Tech graduate student Zaid Saleh and University of Florida graduate student Jason Jerauld, brought the instruments they had used to study lightning in Florida to Lightning Technologies Inc., in Pittsfield, Mass. They set up the equipment next to a Marx spark generator just to see what would happen. Half the team guessed they would see x-rays, half did not.

What they found was that 14 tests of 1.5- 2.0 million-volt sparks in the air produced x-ray bursts. The bursts were remarkably similar to the x-ray bursts previously observed from lightning.

“This amazed us. It opens the door to answering really big questions about lightning by generating it in the lab,” said Rassoul. “It also tells us that we have a lot to learn about how even small sparks work.”

Dwyer is excited about the opportunity to study the poorly understood phenomenon of runaway breakdown–shown to be associated with lightning–in the lab. To date, the only mechanism that can account for the creation of the high-energy electrons that make x-rays is the runaway breakdown of air. In this phenomenon, the electric force experienced by electrons exceeds the effective frictional force due to collisions with air molecules, allowing the electrons to “run away” and gain very large energies.

The new finding, published in October in Geophysical Research Letters, will also be discussed on Nature online, the first week of November.

Dwyer’s previous breakthrough findings have earned extensive media exposure, including a recent PBS NOVA ScienceNow program. His work also will be on upcoming Discovery andNational Geographic Channel TV programs.

Media Contact

Karen Rhine EurekAlert!

More Information:

http://www.fit.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…