Finding superconductors that can take the heat
By studying how superconductors interact with magnetic fields, Pitt researchers advance quest for higher-temperature superconducting materials
Superconductors are materials with no electrical resistance that are used to make strong magnets and must be kept extremely cold–otherwise, they lose their superconducting abilities. Even the “high-temperature” superconductors discovered in the 1980s must be kept at around -300°F.
The search for superconductors that function at higher temperatures has taken a step forward with new findings from University of Pittsburgh professor of physics and astronomy Yadin Y. Goldschmidt and former Pitt postdoctoral associate Eduardo Cuansing that were published in the Oct. 21 issue of the journal Physical Review Letters.
When a superconductor is exposed to a magnetic field, the field penetrates it in the form of thin tubes, called vortices. Around each tube circulates an electric current. These vortices arrange themselves into patterns and melt when the temperature of the material is raised.
“This melting transition of the vortices is important, because it usually causes superconductivity to disappear,” said Goldschmidt. “It is thus beneficial to delay the full melting as much as possible.”
In addition to confirming previous experimental results, Goldschmidt and Cuansing used computer simulations of the vortex melting process to find, for the first time, direct evidence of new vortex patterns.
“Experimentalists can hardly see individual vortices,” said Goldschmidt. “But with our simulations, we can actually see a picture of whats going on inside the material.”
Since the vortices tend to attach to long, thin holes in the material, called columnar defects, the Pitt researchers suspected that the vortices would behave differently in the presence of such defects. And they did: When there were more vortices than holes, the vortex matter melted in two stages instead of one as the temperature was raised.
“Once physicists understand these melting mechanisms, they may be able to design materials that remain superconductors at higher temperatures,” Goldschmidt said.
Media Contact
More Information:
http://www.pitt.eduAll latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…