Lighting up paper

Researchers have developed a sophisticated way of measuring the print quality of paper. The work, published today in the Institute of Physics journal, Measurement Science and Technology, describes how Jari Palviainen and colleagues at the Universities of Joensuu and Oulu in Finland, use what is known as a diffractive optical element-based sensor to investigate how laser-light interacts with paper before and after laser printing with colour ink.

The physical properties of paper such as colour, brightness, gloss, opacity and roughness affect its quality – the way it looks and how suitable it is for printing. For example, the surface roughness affects the reflectance and scattering of light from the paper surface, contributing to the print quality of the paper. Knowledge of these factors can be used to improve the suitability of the wood and other materials used to make paper pulp.

To meet the growing need for sophisticated tools to measure paper quality, Dr Palviainen and colleagues focused their work on the fibres in the paper – the wood cells. The cell wall can be thought of as bundles of multilayered structures of microfibrils or nanotubes made up of cellulose, hemicellulose and lignin. The cell walls influence the light by scattering it. By analysing the scattered light, optical changes in the paper can be detected.

Using a diffractive optical element sensor (DOE), they investigated the laser-light interaction with commercial paper before and after printing with colour ink. The DOE sensor detects changes in the optical properties of the paper such as surface roughness, reflectance and transmittance caused by the ink.

By shining a polarised laser beam on the surface of the paper sample, reflected and transmitted wavefronts of light are guided to the DOE aperture. These wavefronts are then focused onto different locations where a CCD-camera records the information. The scattering caused by the paper sample changes the perfect wavefront into a disturbed wavefront, giving information on the paper quality.

“We have found a correlation between optical signals and properties of paper such as surface quality, uneveness and quality of black and coloured ink prints. These parameters will be very useful to make compact and robust optical measuring tools for laboratory and industrial applications,” said Jari Palviainen.

Media Contact

Alice Bows alphagalileo

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…