Shifting sound to light may lead to better computer chips
Lawrence Livermore National Laboratory scientists have for the first time converted the highest frequency sounds into light by reversing a process that converts electrical signals to sound.
Commonly used piezo-electric speakers, such as those found in a cell phone, operate at low frequencies that human ears can hear.
But by reversing that process, lead researchers Michael Armstrong, Evan Reed and Mike Howard, LLNL colleagues, and collaborators from Los Alamos National Laboratory and Nitronex Corp., used a very high frequency sound wave – about 100 million times higher frequency than what humans can hear – to generate light.
“This process allows us to very accurately ‘see’ the highest frequency sound waves by translating them into light,” Armstrong said.
The research appears in the March 15 edition of the journal Nature Physics.
During the last decade, pioneering experiments using sub-picosecond lasers have demonstrated the generation and detection of acoustic and shock waves in materials with terahertz (THz) frequencies. These very same experiments led to a new technique for probing the structure of semiconductor devices.
However, the recent research takes those initial experiments a step further by reversing the process, converting high-frequency sound waves into electricity. The researchers predicted that high frequency acoustic waves can be detected by seeing radiation emitted when the acoustic wave passes an interface between piezoelectric materials.
Very high-frequency sound waves have wavelengths approaching the atomic-length scale. Detection of these waves is challenging, but they are useful for probing materials on very small length scales.
But that’s not the only application, according to Reed.
“This technique provides a new pathway to generation of THz radiation for security, medical and other purposes,” he said. “In this application, we would utilize acoustic-based technologies to generate THz.” Security applications include explosives detection and medical use may include detection of skin cancer.
And the Livermore method doesn’t require any external source to detect the acoustic waves.
“Usually scientists use an external laser beam that bounces off the acoustic wave – much like radar speed detectors – to observe high frequency sound. An advantage of our technique is that it doesn’t require an external laser beam – the acoustic wave itself emits light that we detect,” Armstrong said.
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.
Media Contact
More Information:
http://www.llnl.govAll latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…