Towards quantum simulation of false vacuum decay

Measured momentum distribution of the shaken quantum gas during the phase transition. The central peak on the left corresponds to the initial Mott insulator while the two peaks on the right indicate the appearance of the distinct staggered order.
Credit: Bo Cheng

By shaking an optical lattice potential, researchers in Cambridge have realized a discontinuous phase transition in a strongly correlated quantum gas, opening the door to quantum simulations of false vacuum decay in the early universe.

Phase transitions are everywhere, ranging from water boiling to snowflakes melting, and from magnetic transitions in solids to cosmological phase transitions in the early universe. Particularly intriguing are quantum phase transitions that occur at temperatures close to absolute zero and are driven by quantum rather than thermal fluctuations.

Researchers in the University of Cambridge studied properties of quantum phases and their transitions using ultracold atoms in an optical lattice potential (formed by a set of standing wave lasers). Typically, the transition from a Mott insulator (MI) to a superfluid (SF), which is governed by the interplay of the atom-atom interactions and the hopping of atoms, is a continuous transition, where the system undergoes a smooth continuous change crossing the phase transition point.

However, many phase transitions are discontinuous, such as water freezing to ice, or the transition thought to have triggered the inflation period in the early universe. These are called ‘first-order transitions’ and for instance allow both phases to coexist – just like ice blocks in a glass of water – and can lead to hysteresis and metastability, where a system remains stuck in its original phase (the false vacuum) even though the ground state has changed.

By resonantly shaking the position of the lattice potential, the researchers could couple or “mix” the first two bands of the lattice. For the right parameters, this can excite the atoms from the lowest band into the first excited band, where they would form a new superfluid in which the atoms appear at the edge of the band (see figure). Crucially, the transition from the original Mott insulator in the lowest band to the resulting staggered superfluid in the excited band can be first-order (discontinuous), because the non-staggered order in the Mott insulator is incompatible with the staggered order of this superfluid – so the system has to choose one. The researchers could directly observe the metastability and hysteresis associated with this first-order transition by monitoring how fast one phase changes into another, or not. The findings are published in the journal Nature Physics.

“We realised a very flexible platform where phase transitions could be tuned from continuous to discontinuous by changing the shaking strength. This demonstration opens up new opportunities for exploring the role of quantum fluctuations in first-order phase transitions, for instance, the false vacuum decay in the early universe,” said first author Dr Bo Song from Cambridge’s Cavendish Laboratory. “It is really fascinating that we are on the road to cracking the mystery of the hot and dense early universe using such a cold and tiny atomic ensemble.”

“We are excited to enhance the scope of quantum simulators from condensed matter settings towards potential simulations of the early universe. While there clearly is a long way still to go, this work is an important first step,” added Professor Ulrich Schneider, who led the research at the Cavendish Laboratory. “This work also provides a testbed for exploring the spontaneous formation of spatial structures when a strongly interacting quantum system undergoes a discontinuous transition.”

“The underlying physics involves ideas that have a long history at the Cavendish, from Nevill Mott (on correlations) to Pyotr Kapitsa (on superfluidity), and even using shaking to effect dynamical control in a manner explained by Kapitsa but put to use in a way he would never have envisaged,” explained Professor Nigel Cooper, also from the Cavendish.

The research is funded in part by the European Research Council (ERC), and the UK Engineering and Physical Sciences Research Council (EPSRC) as well as the Simons Foundation.

Journal: Nature Physics
DOI: 10.1038/s41567-021-01476-w
Article Title: Realizing discontinuous quantum phase transitions in a strongly correlated driven optical lattice
Article Publication Date: 20-Jan-2022

Media Contact

Vanessa Bismuth
University of Cambridge
vanessa.bismuth@phy.cam.ac.uk
Office: 07-707-288-203

www.cam.ac.uk

Media Contact

Vanessa Bismuth
University of Cambridge

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…