Towards the control of chemical reactions

The technique was demonstrated on helium atoms: here the research team was able to manipulate the electronic energy levels, and the motion of electrons was subsequently measured.
Credit: Alessia Candeo - Politecnico di Milano

Overcoming one of the challenges of quantum mechanics:

A major result in quantum mechanics has been achieved: for the first time, the temporal evolution of a quantum system has been manipulated through interaction with light oulses in the extreme ultraviolet (XUV). This achievement has been obtained by a team of researchers coordinated by Prof. Lukas Bruder from the University of Freiburg, in collaboration with 14 international institutes, including the Politecnico di Milano, the Institute of Photonics and Nanotechnologies of the National Research Council of Milan (CNR-IFN), the Institute of Materials Workshop of the National Research Council of Trieste (CNR-IOM), the National Institute for Nuclear Physics (INFN), the National Laboratories of Frascati (Rome), and the Elettra Synchrotron in Trieste.

The group discovered that it is possible to control matter at the atomic level by exploiting peculiar properties of light in the extreme ultraviolet (XUV). The experiment, recently published in the international journal Nature, made it possible to control the quantum states of matter at ultrafast time scales and its chemical properties with extreme precision. The technique was demonstrated on helium atoms: here the research team was able to manipulate the electronic energy levels, and the motion of electrons was subsequently measured.

The international research team successfully achieved the challenging goal of sculpting the amplitude, phase, and polarization of ultrashort pulses in the  XUV in order to control the behavior of atoms. This level of control enabled the enhancement of selected quantum processes while suppressing others. The experiments were conducted at the FERMI free-electron laser at Elettra Synchrotron in Trieste, one of Italy’s leading research centers.

“With this study, we have extended the so-called coherent control to the spectral regions of XUV and of X-rays. Coherent control involves using light to manipulate the evolution of chemical reactions and direct them toward desired chemical products,” explains Dr. Cristian Manzoni of CNR-IFN.

“This process, which is intrinsically a consequence of quantum physics, could allow us to use light as a chemical reagent to control reaction efficiency. This would enable the efficient production of highly specialized molecules for applications such as pharmaceuticals,” concludes prof. Giulio Cerullo from the Physics Department of Politecnico di Milano, one of the co-authors of the publication.

Journal: Nature
DOI: 10.1038/s41586-024-08209-y

Media Contact

Elena Rostan
Politecnico di Milano
relazionimedia@polimi.it
Cell: +393666211436

www.polimi.it

Media Contact

Elena Rostan
Politecnico di Milano

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

World’s smallest molecular machine

… reversible sliding motion in ammonium-linked ferrocene. Researchers stabilized ferrocene molecules on a flat substrate for the first time, creating an electronically controllable sliding molecular machine. Artificial molecular machines, nanoscale…

Planets form through domino effect

New radio astronomy observations of a planetary system in the process of forming show that once the first planets form close to the central star, these planets can help shepherd…

M87’s powerful jet unleashes rare gamma-ray outburst

Also known as Virgo A or NGC 4486, M87 is the brightest object in the Virgo cluster of galaxies, the largest gravitationally bound type of structure in the universe. It…