Ultra-short laser flashes on demand
Controllable light pulse pairs from a single fibre laser.
In an innovative approach to controlling ultrashort laser flashes, researchers from the Universities of Bayreuth and Konstanz are using soliton physics and two pulse combs within a single laser. The method has the potential to drastically speed up and simplify laser applications. The results of the research have now been published in Science Advances.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Georg Herink
Ultrafast Dynamics Group
Phone: +49 (0)921 / 55-3161
E-Mail: georg.herink@uni-bayreuth.de
Originalpublikation:
Julia A. Lang et al. ,Controlling intracavity dual-comb soliton motion in a single-fiber laser.Sci. Adv.10, eadk2290(2024). DOI:10.1126/sciadv.adk2290
https://www.uni-bayreuth.de/press-releases/ultra-short-laser-flashes-on-demand
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…