Upgraded code reveals a source of damaging fusion disruptions

Destructive magnetic perturbations create a complex 3-D structure of magnetic field lines that randomly wander inside the tokamak. The red line shows the 3-D trajectory of an example field line, and each field line can have a significantly different trajectory. The colors of the cross-section represent the length of field line trajectory through each area, from short (black) to long (yellow) lengths.
Credit: Min-Gu Yoo

Discoveries reveal an escape route for high-energy electrons that can lead to thermal quenches.

Researchers at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) and Los Alamos National Laboratory have uncovered a key process behind a major challenge called thermal quenches, the rapid heat loss in hot plasmas that can occur in doughnut-shaped tokamak fusion devices. Such quenches are sudden drops of electron heat in the plasma that fuels fusion reactions, drops that can create damaging disruptions inside the tokamak. Understanding the physics behind these quenches, caused by powerful perturbations in the magnetic fields that confine the plasma in tokamaks, could lead to methods to mitigate or prevent them.

Researchers have now traced a comprehensive mechanism for thermal quenches to turbulent particle transport. Using the laboratory’s Gyrokinetic Tokamak Simulation (GTS) code, the physicists explored how the hot plasma, which is composed of free electrons and atomic nuclei, or ions, generates the electric field and the turbulent particle transport at the outset of quenches.

The GTS code was originally developed at PPPL to simulate turbulence and transport physics in the hot core plasmas which are confined by magnetic fields in tokamaks. Recently, the GTS code has been extended to study more complex plasmas and magnetic fields, such as destructive magnetic perturbations that break the magnetic field cage and create chaotic 3-D magnetic field lines (Figure 1). The introduction of novel numerical algorithms and the acceleration of graphics processing units made this powerful new capability possible. This upgrade enables the consistent simulation of plasma transport during thermal quenches at lower computational costs, yielding important new insights into disruption physics.

The GTS code traced the plasma transport mechanism to the evolution of a self-generated electric field in 3-D chaotic magnetic fields, whose complexity had previously made the quenching mechanisms difficult to understand. The improved code unraveled the controversy and laid bare the physics behind the mechanism.

The self-generated field mixes up the plasma, causing high-energy electrons to escape from the core and fly toward the wall. This enhanced heat transport produces a rapid and continuous drop in electron temperature, leading to the thermal quench.

From the simulation results and comparison to experimental observations, researchers found that this novel mechanism could be a major contributor to the abrupt quenches. The researchers have proposed an analytic model of plasma transport that provides new physical insights for understanding the complex topology of 3-D magnetic field lines. These breakthrough discoveries could lead to new steps to battle damaging disruptions.

Abstract

TI02.00001                 Collisonless transport mechanisms for thermal quench in stochastic magnetic fields open at the wall boundary

Session

TI02: MFE IV: Edge and Scrape-Off Layer Plasmas

9:30 AM–12:30 PM, Thursday, November 11, 2021

Room: Ballroom C

Media Contact

Saralyn Stewart
APS Division of Plasma Physics
stewart@physics.utexas.edu
Office: (512) 694-2320

www.utexas.edu

Expert Contact

Min-Gu Yoo
Princeton Plasma Physics Laboratory
myoo@pppl.gov

www.pppl.gov

Media Contact

Saralyn Stewart
APS Division of Plasma Physics

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…