Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety

Grohnde/Lower Saxony nuclear power plant Thorsten Schier / Fotolia

According to current German law, the use of nuclear energy for producing power will be discontinued by 2022. Extending the operational lifetime of existing nuclear power plants outside of Germany – including those in locations directly bordering Germany – has been accepted in many countries as a strategic goal for ensuring a sufficient supply of power in the coming decades.

Consequently, the safe operation of European nuclear power plants continues to be necessary and essential. Within the framework of a research program tendered by the European Commission and the European Atomic Energy Community (EURATOM), Fraunhofer IZFP has been awarded a lucrative EU project.

Detecting material damage in a focused and timely manner

The Fraunhofer IZFP was tasked with coordinating a consortium of a total of 10 European partners collaborating on technological solutions for testing material damage in reactor pressure vessels. “The goal of the NOMAD* research project is to develop a nondestructive evaluation system that is to be used in periodic safety reviews of the reactor pressure vessel of nuclear power plants.

Its purpose is to allow determining the location and characterizing the nature of material damage in reactor pressure vessel steels,” explained Dr. Madalina Rabung, the lead responsible for this project at Fraunhofer IZFP.

The reactor pressure vessel protects our environment from radioactive radiation; inside this vessel are the fuel elements, whose radioactive radiation can result in the vessel wall embrittlement over the long term. Sudden failure of a reactor pressure vessel due to embrittlement would be disastrous for humanity and our environment.

Safe reactor pressure vessels with intelligent sensing and evaluation systems

So far, safety routines have been based on monitoring concepts in which small samples are already taken during the manufacture of the reactor pressure vessels. These small samples are then intentionally exposed to increased radioactive radiation in order to detect – in anticipation of reality – potential deterioration of the material properties.

“However, the material of a reactor pressure vessel is not always homogeneous; thus, such samples cannot be considered a solid reference for the entire pressure vessel,” added Dr. Rabung. Fraunhofer IZFP will increase safety significantly by looking at the reactor pressure vessel in its entirety, evaluating it regularly and non-invasively using intelligent sensors based on ultrasound and 3MA**.

With regard to the extension of operational lifetime, NOMAD will provide additional parameters to supplement the current invasive tests. The nondestructive characterization of material properties in essential, non-replaceable nuclear power plant components such as the reactor pressure vessel can thus make a significant contribution to improving the safety and the safe long-term operation of nuclear power plants.

Partners involved

The research project, which is scheduled to last for four years and is funded with a total of almost 5 million euros, was evaluated positively by the European Commission and started on June 1, 2017. Fraunhofer IZFP's application process was financially supported by the federal state of Saarland's research funding program.

In addition to Fraunhofer IZFP, the following partners are participating in this research project: SCK•CEN Belgian Nuclear Research Centre (Belgium), VTT Technical Research Centre of Finland Ltd. (Finland), SVTI Swiss Association for Technical Inspections (Switzerland), Coventry University (Great Britain), HEPENIX Technical Service Ltd. (Hungary), Hungarian Academy of Science Centre for Energy Research (Hungary), Paul Scherrer Institut (Switzerland), Tecnatom S.A. (Spain), and Eurice GmbH (Germany).

*Nondestructive Evaluation System for the Inspection of Operation-Induced Material Degradation in Nuclear Power Plants
** Micromagnetic Multiparameter Microstructure and Stress Analysis

http://www.izfp.fraunhofer.de
http://www.eurice.eu

Media Contact

Sabine Poitevin-Burbes Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…