New Insight on Superconductors
The team of researchers, led by Yi-feng Yang, a postdoctoral fellow at UC Davis, found a simple way to calculate the temperature at which a new state of matter, the Kondo liquid, emerges in the class of metal alloys called heavy-electron materials. At very low temperatures, these alloys can become superconductors that conduct electricity without resistance.
“We've found a framing concept for an important class of materials, which allows us to begin to understand how they relate to each other and perhaps to find new members of the group,” said Yang's postdoctoral mentor and team member, David Pines, distinguished professor of physics at UC Davis and co-director of ICAM, the Institute for Complex Adaptive Matter.
Heavy electron materials are alloys of metals such as cerium, ytterbium and uranium. They contain both free-moving electrons that make them electrical conductors and a “Kondo” lattice of localized electrons. When the temperature of the material is lowered below a characteristic temperature, the localized electrons lose their magnetism as they become collectively “entangled” through quantum mechanical effects with the conduction electrons, which become heavy and form the Kondo liquid. At much lower temperatures these heavy electrons then become either magnetic or superconducting.
Yang received a fellowship from ICAM that enabled him to become “embedded” in an experimental group on heavy electron materials led by Joe D. Thompson at Los Alamos. With Thompson and Han-oh Lee at Los Alamos, and Zachary Fisk at UC Irvine, he reviewed 30 years of existing data on heavy-electron materials, plus new experimental data collected by Thompson and Lee, to establish a long-sought connection between single impurities and lattice behavior in these materials.
They found that the crucial temperature at which the Kondo liquid emerges depends in a remarkably simple way on the coupling of individual local spins to the conduction electrons, Pines said.
The discovery should help researchers find the organizing principles of heavy-electron superconductivity, because it clarifies the nature of the normal state out of which superconductivity emerges, Pines said.
The work was supported by the National Science Foundation and by the ICAM fellowship for Yang. ICAM is a multidisciplinary research program of the University of California that has 57 branches across the U.S. and globally, with its headquarters at UC Davis.
Media Contact
More Information:
http://www.ucdavis.eduAll latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
Nerve cells of blind mice retain their visual function
Nerve cells in the retina were analysed at TU Wien (Vienna) using microelectrodes. They show astonishingly stable behavior – good news for retina implants. The retina is often referred to…
State-wide center for quantum science
Karlsruhe Institute of Technology joins IQST as a new partner. The mission of IQST is to further our understanding of nature and develop innovative technologies based on quantum science by…
Newly designed nanomaterial
…shows promise as antimicrobial agent. Rice scientists develop nanocrystals that kill bacteria under visible light. Newly developed halide perovskite nanocrystals (HPNCs) show potential as antimicrobial agents that are stable, effective…