New standards in onshore numerical site assessment in Namibia

The HYPHEN facility is to be built on 4,000 square kilometres.
©Hyphen

Fraunhofer Institute for Wind Energy Systems IWES is joining forces with ENERTRAG SE to assist in planning an expansive onshore wind farm as part of Hyphen’s green hydrogen project in Namibia.

Covering 4,000 km2 and generating four gigawatts (GW) of power, the scale alone poses significant challenges for current site assessment methods, prompting Fraunhofer IWES to use innovative and precise approaches for wind field calculations to optimize yield.

Green hydrogen enables the storage and long-distance transportation of solar and wind energy on a large scale, responding to the increasing global demand for this sustainable energy source.

ENERTRAG – together with Nicholas Holdings, shareholder at Hyphen – is developing the Hyphen project. The wind and solar energy farms near the coast south of Lüderitz have distinctive climatic conditions, as trade winds, an extreme desert climate, and cold Atlantic currents converge there.

The collaboration aims to navigate challenges posed by local variations in wind conditions, influenced by complex terrain and atmospheric conditions.

By leveraging data from global reanalysis data sources, Fraunhofer IWES focuses on refining wind field calculations with improved precision. This involves downscaling the reanalysis data to a few kilometers, ensuring superior resolution for specific regions. The team also dedicates attention to computational fluid dynamics (CFD) of wind in complex terrains, capturing data from mesoscale simulations and presenting them on a meter scale.

Adopting a time series analysis approach enhances accuracy by considering seasonal and daily influences on wind patterns. To ensure utmost precision, ENERTRAG provides measurement data from selected points for integration into simulations, enabling correlation and calibration.

The investigation into the effects of the wind farm on local wind conditions involves using the »FOXES« open source code developed by Fraunhofer IWES. This code offers higher flexibility for calculating wind turbine wakes than commercial tools, ensuring a more adaptable and precise analysis. Additionally, Fraunhofer IWES will optimize the wind farm layout using the freely accessible code »iwopy«.

»We are looking forward to collaborating closely with Fraunhofer IWES, drawing upon their experience and expertise in wind field analysis. Leveraging their vast knowledge gained from years of pioneering research, we are confident about achieving the optimal yield for our ambitious project. This collaboration marks a significant step towards mitigating planning risks and ensuring the best business case for the Hyphen project,« emphasized Ulrich Heindl, Head of Department, Energy Systems, ENERTRAG.

Dr. Bernhard Stoevesandt, Head of Department Aerodynamics, CFD, and Stochastic Dynamics, Fraunhofer IWES, explained: »The proper assessment of a site is key to the economic success of a wind farm. The computational simulation methods allow local and time-dependent analysis of the yields for all wind turbine locations in a project of this scale. This makes it possible to minimize the risks of the project in accordance with the latest R&D findings. We are looking forward to working together closely with ENERTRAG on the Hyphen project.«

Marco Raffinetti, CEO of Hyphen, said: »The team at the Fraunhofer Institute for Wind Energy Systems IWES brings a wealth of knowledge and expertise to Hyphen and will help drive our project forward using innovative techniques and first-class analysis. It is vital that we harness the power of Namibia’s wind and sun to create huge benefits for the country and its citizens, and we are pleased to welcome the institute on board.«

Notes to editors:

Hyphen project: https://hyphenafrica.com/

Hyphen refers to sub-Saharan Africa’s largest and only fully vertically integrated green hydrogen to green ammonia project. Following a competitive tender process run by the Government of the Republic of Namibia (GRN), Hyphen Hydrogen Energy, a Namibian-registered green hydrogen development company and joint venture of ENERTRAG is working in partnership with GRN to realize the Hyphen project.

The total project capital investment of over EUR 12 billion is roughly equivalent to the country’s annual GDP and is expected to cut 5–6 million tonnes (annually) of global CO2 emissions. Built on approx. 4,000 km2 of land within the Tsau ||Khaeb National Park and in and around the towns of Lüderitz and Aus, it is expected to create up to 15,000 new jobs during the construction phase and 3,000 permanent jobs during its operation. The wider Southern Corridor Development Initiative (SCDI) is expected to sustain approx. 200,000 direct jobs.

Hyphen is targeting annual production of 1 million tonnes of green ammonia by the end of 2027, expanding to 2 million tonnes by the end of 2029, with the majority exported to Europe, South Korea, and Japan to help decarbonize those economies.

Press contact ENERTRAG SE
Michael Rassinger
michael.rassinger@enertrag.com
+49 160 9626 1279

Press contact at Fraunhofer IWES
Lisa Bösch
lisa.boesch@iwes.fraunhofer.de
+49 471 14290-544

Fraunhofer IWES
Fraunhofer IWES secures investments in technological developments through validation, shortens innovation cycles, accelerates certification procedures, and increases planning accuracy by means of innovative measurement methods in the wind energy and hydrogen technology sectors. There are currently more than 300 scientists and employees as well as more than 100 students employed at nine locations: Bochum, Bremen, Bremerhaven, Görlitz, Hamburg, Hannover, Leer, Leuna, and Oldenburg.

ENERTRAG
ENERTRAG is a leading German renewable energy company specializing in holistic interconnected power plants—wind, PV, electrolysis, and grid infrastructure. With expertise in developing, building, owning, and operating integrated energy systems, ENERTRAG is pivotal in sustainable energy. Producing over 2 TWh of electricity annually and driving 10+ GWh projects globally, it has 20+ years of European experience and a team of 1,000+ employees. As an attractive employer, ENERTRAG offers a meaningful mission, clear vision, and solid financials.

Wissenschaftliche Ansprechpartner:

Fraunhofer Institute for Wind Energy Systems IWES
Dr. Bernhard Stoevesandt
Head of Department Aerodynamics, CFD, and Stochastic Dynamics
Küpkersweg 70, 26129 Oldenburg, Germany
Tel. +49 (0)441 798-5011
E-mail: bernhard.stoevesandt@iwes.fraunhofer.de
https://www.iwes.fraunhofer.de/en.html

Media Contact

Inna Eck Presse- und Öffentlichkeitsarbeit
Fraunhofer-Institut für Windenergiesysteme IWES

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…