Pure red LEDs fulfill a primary goal

To improve display technologies, engineers must integrate the three primary color LEDs, blue, green and red, onto one chip. Credit: © 2020 KAUST

“Electrical engineers can already make bright LEDs using varying materials to produce different colors. But to improve display technologies, engineers must integrate the three primary color LEDs, red, green and blue, onto one chip,” explains Daisuke Iida, an electrical engineer at KAUST.

This means they need to find one material that is suitable for manufacturing all three colors. The material should be able to produce each color with high intensity, and ideally, it should have a high-power output, but use relatively little battery voltage.

The best candidates for generating all three colors are a family of compounds called nitride semiconductors. These are crystals containing nitrogen that in theory can be used to create LEDs that produce light with wavelengths between ultraviolet and infrared, which includes the entire visible spectrum. Engineers usually use gallium nitride to make blue and green LEDs, but they have struggled to make bright red LEDs with this crystal.

“Red vision has been almost impossible–other groups have only really succeeded in making orange, not apple red,” says group leader, Kazuhiro Ohkawa. “Now, we have developed a crystal growth system to realize pure red LEDs.”

Replacing a large portion of the gallium with the element indium gives the desired red, but it is hard to do because indium easily evaporates from the crystal. So Iida, Ohkawa and colleagues created a reactor with extra indium vapor above the crystal's surface, a process known as metalorganic vapor-phase deposition. This added pressure prevents the indium in the crystal from escaping. “This gives us a higher indium concentration at the surface,” says Ohkawa. “That's our secret!”

But there was another hurdle to overcome. Indium is made of larger atoms than gallium, so when it is introduced, it creates defects in the crystal, degrading the quality of output light. The team's trick was to also add aluminum, which has small atoms. “The introduction of the small atoms reduces the strain on the crystal, resulting in fewer crystal defects,” says Iida.

“Another advantage is that the LEDs operate at about half the voltage of its competitors,” says Ohkawa. “This will give you a longer lifetime for batteries.”

Media Contact

Carolyn Unck
carolyn.unck@kaust.edu.sa
966-054-470-0408

https://www.kaust.edu.sa/en 

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

How marine worms regenerate lost body parts

The return of cells to a stem cell-like state as the key to regeneration. Many living organisms are able to regenerate damaged or lost tissue, but why some are particularly…

Nano-scale molecular detective

New on-chip device uses exotic light rays in 2D material to detect molecules. Researchers have developed a highly sensitive detector for identifying molecules via their infrared vibrational “fingerprint”. Published in Nature…

Novel CAR T-cell therapy

… demonstrates efficacy and safety in preclinical models of HER2-positive solid tumors. The p95HER2 protein is found expressed in one third of HER2+ tumors, which represent 4% of all tumors….