Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Reactor (left) used to test the new thermal emitter; Gururaj Naik (right).
Photos by Gustavo Raskosky/Rice University

Rice engineers take unconventional route to improving thermophotovoltaic systems.

Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat into electricity via light. Using an unconventional approach inspired by quantum physics, Rice engineer Gururaj Naik and his team designed a thermal emitter that can deliver high efficiencies within practical design parameters.

The research could inform the development of thermal-energy electrical storage, which holds promise as an affordable, grid-scale alternative to batteries. More broadly, efficient TPV technologies could facilitate renewable energy growth ⎯ an essential component of the transition to a net-zero world. Another major benefit of better TPV systems is recouping waste heat from industrial processes, making them more sustainable. To put this in context, up to 20-50% of the heat used to transform raw materials into consumer goods ends up being wasted, costing the United States economy over $200 billion annually.

TPV systems involve two main components ⎯ photovoltaic (PV) cells that convert light into electricity and thermal emitters that turn heat into light. Both of these components have to work well in order for the system to be efficient, but efforts to optimize them have focused more on the PV cell.

“Using conventional design approaches limits thermal emitters’ design space, and what you end up with is one of two scenarios: practical, low-performance devices or high-performance emitters that are hard to integrate in real-world applications,” said Naik, associate professor of electrical and computer engineering.

In a new study published in npj Nanophotonics, Naik and his former Ph.D. student Ciril Samuel Prasad ⎯ who has since earned a doctorate in electrical and computer engineering from Rice and has taken on a role as a postdoctoral research associate at Oak Ridge National Laboratory ⎯ demonstrated a new thermal emitter that promises efficiencies of over 60% despite being application-ready.

“We essentially showed how to achieve the best possible performance for the emitter given realistic, practical design constraints,” said Prasad, who is the first author on the study.

The emitter is composed of a tungsten metal sheet, a thin layer of a spacer material and a network of silicon nanocylinders. When heated, the base layers accumulate thermal radiation, which can be thought of as a bath of photons. The tiny resonators sitting on top “talk” to each other in a way that allows them to “pluck photon by photon” from this bath, controlling the brightness and bandwidth of the light sent to the PV cell.

“Instead of focusing on the performance of single-resonator systems, we instead took into account the way these resonators interact, which opened up new possibilities,” Naik explained. “This gave us control over how the photons are stored and released.”

This selective emission, achieved through insights from quantum physics, maximizes energy conversion and allows for higher efficiencies than previously possible, operating at the limit of the materials’ properties. To improve on the newly achieved 60% efficiency, new materials with better properties would need to be developed or discovered.

These gains could make TPV a competitive alternative to other energy storage and conversion technologies like lithium-ion batteries, particularly in scenarios where long-term energy storage is needed. Naik noted that this innovation has significant implications for industries that generate large amounts of waste heat such as nuclear power plants and manufacturing facilities.

“I feel confident that what we have demonstrated here, coupled with a very efficient low bandgap PV cell, has very promising potential,” Naik said. “Based on my own experience working with NASA and launching a startup in the renewable energy space, I think that energy conversion technologies are very much in need today.”

The team’s technology could also be used in space applications such as powering rovers on Mars.

“If our approach could lead to an increase in efficiency from 2% to 5% in such systems, that would represent a significant boost for missions that rely on efficient power generation in extreme environments,” Naik said.

The research was supported by the National Science Foundation (1935446) and the U.S. Army Research Office.

This news release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Peer-reviewed paper:

Non-Hermitian selective thermal emitter for thermophotovoltaics | npj Nanophotonics | DOI: 10.1038/s44310-024-00044-3

Authors: Ciril Samuel Prasad and Gururaj Naik

https://doi.org/ 10.1038/s44310-024-00044-3

Access associated media files:

https://rice.box.com/s/9aaqhvdm8td488cphakpk7whzuu4lxkc
(Photos by Gustavo Raskosky/Rice University)

About Rice:

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of architecture, business, continuing studies, engineering, humanities, music, natural sciences and social sciences and is home to the Baker Institute for Public Policy. With 4,574 undergraduates and 3,982 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction, No. 2 for best-run colleges and No. 12 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Journal: npj Nanophotonics
Method of Research: Experimental study
Article Title: Non-Hermitian selective thermal emitter for thermophotovoltaics
Article Publication Date: 21-Nov-2024
COI Statement: Researchers at Rice have found a new way to improve a key element of thermophotovoltaic systems, which convert heat into electricity via light. Rice engineer Gururaj Naik and his team designed a thermal emitter that can deliver high efficiencies within practical design parameters.

Media Contact

Silvia Cernea Clark
Rice University
silviacc@rice.edu
Office: 7133486728

www.rice.edu

Media Contact

Silvia Cernea Clark
Rice University

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…