IMEC realized full CMOS multiple antenna receiver for 60 GHz
At today’s IEEE International Solid State Circuit Conference, IMEC introduced its prototype of a 60GHz multiple antenna receiver, and invites industry to join its 60GHz research program.
The 60GHz band offers massive available bandwidth that enables very high bit rates of several Gbits-per-second at distances up to 10 meters (about 33 feet). To make the 60GHz technology cost-efficient to manufacture, low power and affordable in consumer products, IMEC has built its RF solution in a standard digital CMOS process thereby avoiding the extra cost of alternative technologies or dedicated RF process options.
The second industry goal is to overcome high path losses at mm-wave frequencies by using a phased antenna array approach. IMEC’s prototype uniquely addresses this problem by implementing a programmable phase shift of various incoming signals, which is necessary for beam-forming.
IMEC’s device contains two antenna paths, each consisting of a low-noise amplifier and a down-conversion mixer. The programmable phase shift is realized on the same chip. It starts from the quadrature signals of an on-chip quadrature voltage-controlled oscillator (QVCO). This QVCO design combines the highest oscillation frequency with the largest tuning range ever reported in CMOS.
IMEC’s multiple antenna receiver is the first step towards a complete CMOS-based phased array transceiver for 60GHz wireless personal area networks that envisage multi-gigabit-per-second applications such as fast kiosk downloading, wireless high-definition multimedia interface (HDMI), and other applications.
In the next phase of development, IMEC plans to implement four antenna paths using 45nm CMOS technology and to integrate other subsystems such as the phase-lock loop (PLL), analog-to-digital converter (ADC) and the patch-antenna array itself. IMEC will also begin initial experiments for a power amplifier.
These results were achieved in the unique multi-disciplinary 60GHz technology program. The research combines system-level aspects, algorithms, CMOS IC design, antenna design and module design, which target a low power 60 GHz communication link based on adaptive beamforming using multiple antennas aligned with ongoing standardization activities.
Media Contact
More Information:
http://www.imec.be/wwwinter/mediacenter/en/60GHz_2008.shtmlAll latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
Humans vs Machines—Who’s Better at Recognizing Speech?
Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…
Not Lost in Translation: AI Increases Sign Language Recognition Accuracy
Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…
Breaking the Ice: Glacier Melting Alters Arctic Fjord Ecosystems
The regions of the Arctic are particularly vulnerable to climate change. However, there is a lack of comprehensive scientific information about the environmental changes there. Researchers from the Helmholtz Center…