Illumination made to measure

Light-emitting diodes are unbeatable in terms of energy efficiency. A one-watt LED delivers roughly the same optical output as a hundred-watt light bulb. If a high light output is required, however, the tiny light sources are not the preferred means of illumination. A novel optical component is set to change that situation.

It directs the light to the exact spot where it is needed. In the case of a desk lamp, for instance, the light can be concentrated in such a way that only a DIN-A4-sized surface in the middle of the table is brightly lit. The LED evenly illuminates the required area, while everything else stays in the dark.

“A light-emitting diode is a single-point light source that emits light in a large, uncontrolled area,” says Dr. Christian Wenzel, head of department at the Fraunhofer Institute for Production Technology IPT in Aachen. “We use special lenses to direct all of the light to the place where it is needed, thus increasing the efficiency of the LEDs. The spot of light created by the light source does not therefore fade out at the edges, but has a sharply defined edge.”

This channeling of light is based on a free-form system of optics – a plastic lens whose geometry can be shaped in any way desired. “The lenses are cast using an injection-molding technique. The two halves of the tool that serve as a mold have to be aligned with extreme precision just once – they have an accuracy of a few microns, or less than a tenth of the diameter of a hair. Once the tools have been tared, the lens can be manufactured in large batches at low cost,” says Dr. Wenzel. The researchers at the IPT have optimized the entire process chain: from planning and manufacturing the lens systems to checking their accuracy. “There’s nothing like it anywhere else in Europe,” the expert claims. There is just one challenge that had to be mastered: The plastic, which is inserted into the mold when hot, shrinks as it cools – the finished lenses are therefore slightly smaller than dictated by the mold. The researchers take this effect into account by repeated, gradual improvement – to an accuracy of a few microns.

When the lenses are finished, the scientists check them. To do this, they project a pattern of stripes onto the lens. The distortion of the stripes reveals the curvature, inclination and shape of the lens.

The researchers will demonstrate the entire process chain along with optical systems for practical application at the Optatec trade fair in Frankfurt from June 17 to 20 (Hall 3, Stand D53).

Media Contact

Dr.-Ing. Christian Wenzel Fraunhofer-Gesellschaft

More Information:

http://www.ipt.fraunhofer.de

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Humans vs Machines—Who’s Better at Recognizing Speech?

Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…

AI system analyzing subtle hand and facial gestures for sign language recognition.

Not Lost in Translation: AI Increases Sign Language Recognition Accuracy

Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…

Researcher Claudia Schmidt analyzing Arctic fjord water samples affected by glacial melt.

Breaking the Ice: Glacier Melting Alters Arctic Fjord Ecosystems

The regions of the Arctic are particularly vulnerable to climate change. However, there is a lack of comprehensive scientific information about the environmental changes there. Researchers from the Helmholtz Center…