Nanotechnology to provide cheap solar energy
Professor Bagnall and his Nano Group at the University of Southampton's School of Electronics and Computer Science (ECS) have conducted extensive research into how nanotechnologies can contribute to the creation of solar cells which can be manufactured on cheap flexible substrates rather than expensive silicon wafers by using nanoscale features that trap light.
Speaking in the conference session on Photovoltaic Technology on Tuesday 22 July, Professor Bagnall will deliver a presentation entitled: Biomimetics and plasmonics: capturing all of the light. He will describe how his group has investigated biomimetic optical structures, which copy the nano structures seen in nature so that they can develop solar cells which allow efficient light-trapping. One type of structure is based on an anti-reflective technique exploited by moth eyes. Others are based on metallic nanoparticles that form plasmonic structures.
'It is essential that a solar cell absorbs all of the light that is available,' he said. 'Thicker devices absorb more light and unfortunately the need to use thick layers (particularly in the case of silicon) drives up the cost and often degrades the electronic properties of devices. Effective light-trapping will allow many alternatives and systems to be considered and will allow lower quality (cheaper) material.’
For further details about the World Renewable Energy Conference, please visit: http://www.wrenuk.co.uk/wrecx.html
Media Contact
All latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
Nerve cells of blind mice retain their visual function
Nerve cells in the retina were analysed at TU Wien (Vienna) using microelectrodes. They show astonishingly stable behavior – good news for retina implants. The retina is often referred to…
State-wide center for quantum science
Karlsruhe Institute of Technology joins IQST as a new partner. The mission of IQST is to further our understanding of nature and develop innovative technologies based on quantum science by…
Newly designed nanomaterial
…shows promise as antimicrobial agent. Rice scientists develop nanocrystals that kill bacteria under visible light. Newly developed halide perovskite nanocrystals (HPNCs) show potential as antimicrobial agents that are stable, effective…