Bright light yields unusual vibes
By bombarding very thin slices of several copper/oxygen compounds, called cuprates, with very bright, short-lived pulses of light, Ivan Bozovic, a physicist at the U.S. Department of Energys Brookhaven National Laboratory, and his collaborators have discovered an unusual property of the materials: After absorbing the light energy, they emit it as long-lived sound waves, as opposed to heat energy. This result may open up a new field of study on cuprates — materials already used in wireless communications and under investigation for other applications in the electronics industry.
As the light pulses strike each film, illuminating an area only about a thousandth of a millimeter across, they transfer their energy to the films atoms. In response, the atoms vibrate, and tiny sound wave “packets,” called phonons, spread through the sample. Bozovic observes that, mysteriously, these emitted sound waves do not die out quickly, as they do with other materials. Instead, the atoms oscillate many times before dissipating the absorbed energy. “This is very unusual, as it seems that the atoms find it hard to convert these oscillations into ordinary thermal energy (heat),” said Bozovic.
Through further studies, Bozovic hopes to learn more about this phenomenon, the first step toward finding possible applications for it. For example, this work could contribute to the development of a phaser, a laser-like device that emits phonons instead of light. “Much more research needs to be done,” Bozovic said. “We dont know yet how this property might be useful. However, I have little doubt that the phaser would be a very useful scientific tool for a broad new class of experiments,” Bozovic said.
Bozovic will present his work at 1:03 p.m. on Friday, March 26, in room 517A, during the “Excitation in Strongly Correlated Materials II” session. This research is funded by the Air Force Office of Scientific Research, the National Science Foundation, and a Laboratory Directed Research and Development grant from the U.S. Department of Energys Los Alamos National Laboratory, where part of the work was performed.
NOTE: This press release describes a talk being given by a scientist from the U.S. Department of Energys Brookhaven National Laboratory at the March 2004 meeting of the American Physical Society, taking place March 22-26 at the Palais de Congres, Montreal, Canada (http://www.aps.org/meet/MAR04/).
One of the ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOEs Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Labs electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom
Media Contact
All latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…