NETL and Carnegie Mellon team up to create new paradigms for hydrogen production
NETL and Carnegie Mellon develop new computational modeling tool
The Department of Energy’s National Energy Technology Laboratory (NETL) and Carnegie Mellon University have developed a new computational modeling tool that could make the production of hydrogen cheaper as the United States seeks to expand its portfolio of alternative energy supplies.
The research, supported by the DOE’s Office of Fossil Energy and reported in the current issue of the prestigious journal “Science” published by the American Association for the Advancement of Science, predicts hydrogen flux through metal alloy separation membranes that could be used to produce pure hydrogen.
“This research demonstrates our vision of coupling computational and experimental methods to facilitate rapid research and development of advanced technologies,” said Anthony Cugini, focus area leader of Computational and Basic Sciences at NETL. “In essence, we are developing the computational tools to prescreen hydrogen separation membranes.” These membranes allow pure hydrogen to pass through, while blocking impurities that are present with other gases in the production of hydrogen from fossil energy resources. Separation is a critical component of hydrogen production. Impurities lessen the effective use of hydrogen. Membranes have the ability to remove virtually all of the impurities from the hydrogen stream.
The use of advanced computing to determine the ability of candidate membranes to produce pure hydrogen would be a time- and money-saving step for hydrogen researchers. Instead of having to produce a large suite of alloys with various proportions of metals–such as palladium and copper–and then test them to determine optimum compositions for maximum hydrogen purification, they could predict in advance which compositions would have the desirable properties.
The research team at NETL in collaboration with Carnegie Mellon is investigating a new hydrogen membrane material–a copper palladium alloy–that allows hydrogen to be processed without contamination by other gases such as hydrogen sulfide during the purification process.
“We coupled computational modeling with experimental activity to develop a predictive model for hydrogen flux through copper palladium alloys,” said David Sholl, associate professor in chemical engineering at Carnegie Mellon. “We now have a solid method in the screening of other complex alloys for the future production of hydrogen,” he said.
“Ultimately, we see our new computational tools helping to take us into the new hydrogen economy as we scramble to harness this clean fuel, increasingly driven by our long-term worries about oil supplies as well as environmental challenges,” Sholl said.
“Efficient techniques for large-scale purification of hydrogen are of world-wide interest as we work toward a hydrogen-based economy,” said John Winslow, technology manager for Coal Fuels and Hydrogen at NETL. “If high flux membranes that resist chemical contamination can be developed, the impact of these devices on industrial hydrogen purification would be dramatic.”
Media Contact
More Information:
http://www.cmu.eduAll latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
Decoding Cancer: 40 Years of Breakthroughs in Genetic Research
Cancer in children and adolescents is rare. Nevertheless, malignant diseases are still one of the most common causes of death in this age group. Survivors of childhood or adolescent cancer…
Let’s Think Before the First Drink: How Early Substance Use Might Lead to Brain Structure Differences Among Adolescents
Many differences appeared to exist prior to any substance use, pointing to the role brain structure may play in substance use risk, NIH-supported study suggests. Studies reveal factors that expose…
Combating Kidney Cancer Using Enhanced Immunotherapies
Medical University of South Carolina Hollings Cancer Center researcher receives Department of Defense Early Career Scholar Award to improve immune therapies by targeting resistant kidney tumors. A Medical University of…