New gas sensors patterned with conducting polymer
An improved method for depositing nanoporous, conducting polymer films on miniaturized device features has been demonstrated by researchers at the National Institute of Standards and Technology (NIST).
Described in the April 6 issue of the Journal of the American Chemical Society,* the method may be useful as a general technique for reproducibly fabricating microdevices such as sensors for detecting toxic chemicals.
Unlike most polymers, conducting polymers have the electrical and optical properties of metals or semiconductors. These materials are of increasing interest in microelectronics because they are inexpensive, flexible and easy to synthesize.
Polyaniline is a particularly promising conducting polymer for microelectronics applications, but it is difficult to process because it doesnt dissolve in most solvents. NIST researchers have circumvented this problem by dispersing nanoscale particles of polyaniline into a mild solvent.
“The beauty of the method,” says NIST guest researcher Guofeng Li, “is that the polyaniline chain carries a natural positive charge.” Once the particles are formed, electrostatic repulsion prevents them from clumping together. Moreover, the positively charged particles then can be manipulated and patterned on complex device structures by applying an electrical field.
The process produces a sponge-like coating that efficiently captures gaseous molecules. So far NIST researchers have demonstrated that such coatings can detect the difference between methanol and water vapor. Additional tests will be needed before the polymer devices could be used for detecting toxic gases.
NIST holds patents for previous work using microheaters coated with nanostructured tin oxide films. As the microheaters cycle through a series of temperatures, changes in electrical resistance are used to detect toxic gases at part per billion levels. Ultimately, NIST researchers hope to develop inexpensive arrays of microheater sensors coated with both polymer and inorganic oxide films optimized to identify the components of gas mixtures.
Media Contact
More Information:
http://www.nist.govAll latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
Magnetic Memory Unlocked with Energy-Efficient MRAM
Researchers from Osaka University introduced an innovative technology to lower power consumption for modern memory devices. Stepping up the Memory Game: Overcoming the Limitations of Traditional RAM Osaka, Japan –…
Next-Level System Security: Smarter Access Control for Organizations
Cutting-Edge Framework for Enhancing System Security Researchers at the University of Electro-Communications have developed a groundbreaking framework for improving system security by analyzing business process logs. This framework focuses on…
How Microbial Life Shapes Lime Formation in the Deep Ocean
Microorganisms are everywhere and have been influencing the Earth’s environment for over 3.5 billion years. Researchers from Germany, Austria and Taiwan have now deciphered the role they play in the…