Green diesel: New process makes liquid transportation fuel from plants
University of Wisconsin-Madison College of Engineering researchers have discovered a new way to make a diesel-like liquid fuel from carbohydrates commonly found in plants.
Reporting in the June 3 issue of the Journal Science, Steenbock Professor James Dumesic and colleagues detail a four-phase catalytic reactor in which corn and other biomass-derived carbohydrates can be converted to sulfur-free liquid alkanes resulting in an ideal additive for diesel transportation fuel. Co-researchers include chemical and biological engineering graduate students George Huber, Juben Chheda and Chris Barrett.
“It’s a very efficient process,” says Huber. “The fuel produced contains 90 percent of the energy found in the carbohydrate and hydrogen feed. If you look at a carbohydrate source such as corn, our new process has the potential to create twice the energy as is created in using corn to make ethanol.”
About 67 percent of the energy required to make ethanol is consumed in fermenting and distilling corn. As a result, ethanol production creates 1.1 units of energy for every unit of energy consumed. In the UW-Madison process, the desired alkanes spontaneously separate from water. No additional heating or distillation is required. The result is the creation of 2.2 units of energy for every unit of energy consumed in energy production.
“The fuel we’re making stores a considerable amount of hydrogen,” says Dumesic. “Each molecule of hydrogen is used to convert each carbon atom in the carbohydrate reactant to an alkane. It’s a very high yield. We don’t lose a lot of carbon. The carbon acts as an effective energy carrier for transportation vehicles. It’s not unlike the way our own bodies use carbohydrates to store energy.”
About 75 percent of the dry weight of herbaceous and woody biomass is comprised of carbohydrates. Because the UW-Madison process works with a range of carbohydrates, a wide range of plants, and more parts of the plant, can be consumed to make fuel.
“The current delivered cost of biomass is comparable or even cheaper than petroleum-based feedstock on an energy basis,” Huber says.
“This is one step in figuring out how to efficiently use our biomass resources.”
Media Contact
More Information:
http://www.engr.wisc.eduAll latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…