New technique aids nano-electronic manufacturing
In the time it takes to read this sentence, your fingernail will have grown one nanometer. Thats one-billionth of a meter and it represents the scale at which electronics must be built if the march toward miniaturization is to continue.
Reporting in the June 3 issue of the Journal Science, an international team of researchers shows how control over materials on this tiny scale can be extended to create complex patterns important in the production of nano-electronics.
About two years ago, a team led by University of Wisconsin-Madison Chemical and Biological Engineering Professor Paul Nealey, demonstrated a lithographic technique for creating patterns in the chemistry of polymeric materials used as templates for nano-manufacturing. They deposited a film of block copolymers on a chemically patterned surface such that the molecules arranged themselves to replicate the underlying pattern without imperfections.
That technique works well for creating templates that are neatly ordered in periodic arrays, explains Nealey, who directs the NSF-funded Nanoscale Science and Engineering Center. “But one of the challenges of nanofabrication is integrating these self-assembling materials, that naturally form periodic structures, into existing manufacturing strategies,” he says.
Adds Nealey: “Engineers create microelectronics under free-form design principles. Not everything fits neatly into an array. This new technique directs the assembly of blends of block copolymers and homopolymers on chemically nano-patterned substrates. The result is the creation of structures with non-regular geometries. Weve now potentially harnessed the fine control over structure dimensions, afforded by self-assembling materials, to allow for the production of complex nano-electronic devices.”
That kind of control is critical if computer architects are to continue advancing by Moores Law. In 1965, Gordon Moore noted the exponential growth in the number of transistors per integrated circuit and predicted the trend would continue. It has. About every 18 months, the number of transistors in computer chips doubles. By decreasing the size of these components and, consequently, fitting more of them onto a single chip, computer speed and power improves. But before long, existing technology will run out of room.
Current manufacturing processes employing chemically amplified lithography techniques achieve dimensions as small as 50 to 70 nanometers, but that technology might not be extendable as feature dimensions shrink below 30 nanometers.
By merging the latest principles of lithography and self-assembly block-copolymer techniques, researchers at UW-Madison and the Paul Scherrer Institute in Switzerland developed a hybrid approach that maximizes the benefits and minimizes the limitations of each approach to nano-manufacturing.
“These new self-assembly materials used in conjunction with the most advanced exposure tools may enable the extension of current manufacturing practices to dimensions of 10 nanometers and less,” says Chemical and Biological Engineering graduate student and co-author Mark Stoykovich.
Media Contact
More Information:
http://www.engr.wisc.eduAll latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…