New research to create reliable electronic systems

The project is called SABRE (Self-healing cellular Architectures for Biologically-inspired highly Reliable Electronic systems). The part of the project to be carried out in Bristol will be based at Bristol Robotics lab (BRL), which is jointly run by the University of Bristol and UWE.

Increasingly, our lives are intertwined with digital electronic equipment. From gadgets to household appliances, computers, and the life-saving systems which ensure that cars and planes are safe, these devices can be extremely complex and often have hundreds of thousands of components on a single chip. However, if one component fails this commonly causes catastrophic failure of the whole system. Electronic hardware designers have achieved fantastic levels of reliability so far but, as such devices become more and more complex, such instances can only become more common. Under fault conditions it would, therefore, be highly desirable for the system to be able to cope with faults, and continue to operate effectively even if one or more components have failed; but this is not the way electronic systems are currently designed.

Drawing on inspiration from nature, the researchers at York and Bristol will look for ways to create electronic systems based on a structure of ‘cells’ which have the ability to work together to defend system integrity, diagnose faults, and heal themselves. The researchers will be looking at the way complex biological systems, such as the defence mechanism of the human body, are able to deal with faults and still keep functioning.

Dr. Tony Pipe, (Bristol Robotics Laboratory) explains, “When an electronic system malfunctions it should be able to cope with minor faults and continue to operate effectively even if one or more components fail. Currently, those few electronic systems that are designed to be fault-tolerant either replicate whole sub-systems at a high level in the overall architecture (similar to having two lungs), or roll back to a simpler, safer mode when there is a malfunction, but still replicate the whole system or a large part of it in a simplified form. This is a vital function in current safety-critical systems such as anti-lock breaking, fly-by-wire aircraft, space exploration, as well as industrial control and shutdown systems.

“However highly complex living organisms such as the human body are able to deal with malfunctions at a much lower level, that of the cells, defending the system overall by repairing damage to cells, thus maintaining normal functionality. The human body is both reliable and highly complex. It is this ability that we want to try to replicate in electronic systems. By studying the multi-cellular structure of living organisms and their protective immune systems, we hope to be able to design ‘nature-like’ fault tolerant architectures for electronics. This research has the potential to influence the way complex electronic systems are designed in the future, creating a new generation of electronic systems which are fault tolerant and self healing.”

The research will pave the way for a biologically inspired unique design approach for electronic systems across a wide range of applications, from communication through computing and control, to systems operating in safety-critical or hostile environments.

The project is funded by EPSRC.

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Nerve cells of blind mice retain their visual function

Nerve cells in the retina were analysed at TU Wien (Vienna) using microelectrodes. They show astonishingly stable behavior – good news for retina implants. The retina is often referred to…

State-wide center for quantum science

Karlsruhe Institute of Technology joins IQST as a new partner. The mission of IQST is to further our understanding of nature and develop innovative technologies based on quantum science by…

Newly designed nanomaterial

…shows promise as antimicrobial agent. Rice scientists develop nanocrystals that kill bacteria under visible light. Newly developed halide perovskite nanocrystals (HPNCs) show potential as antimicrobial agents that are stable, effective…