Beyond Silicon's Elemental Logic

Almost since the first silicon MOSFET was invented, engineers have sought to construct versions using gallium arsenide or other III-V semiconductors, which would be able to operate at considerably higher speeds.

The main roadblock has been in finding a suitable material to use as a gate insulator. But in recent years, considerable progress has been made.

One technique uses molecular-beam epitaxy to deposit a gallium oxide-gadolinium oxide insulator on a III-V substrate. Another successful method is to deposit an aluminum oxide gate insulator using atomic-layer deposition, which is less technically demanding than molecular-beam epitaxy.

These and other approaches are bringing the day closer when engineers will be able to integrate millions of III-V MOSFETs into microprocessors or other digital ICs. By combining these transistors (which use electrons as charge carriers) with others made of germanium (which use “holes” as charge carriers), chip manufacturers should be able to build CMOS ICs that operate several times faster than those built from silicon.

Media Contact

David Schneider Newswise Science News

More Information:

http://www.ieee.org.

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Cichlids practicing brood care in 3D-printed snail shells

Time to Leave Home? Revealed Insights into Brood Care of Cichlids

Shell-dwelling cichlids take intense care of their offspring, which they raise in abandoned snail shells. A team at the Max Planck Institute for Biological Intelligence used 3D-printed snail shells to…

Amphiphile-enhanced wearable fabric generating electricity from movement

Smart Fabrics: Innovative Comfortable Wearable Tech

Researchers have demonstrated new wearable technologies that both generate electricity from human movement and improve the comfort of the technology for the people wearing them. The work stems from an…

Visualization of Atlantic Meridional Overturning Circulation (AMOC) stability over 60 years

Going Steady—Study Reveals North Atlantic’s Gulf Stream Remains Robust

A study by the University of Bern and the Woods Hole Oceanographic Institution in the USA concludes that the ocean circulation in the North Atlantic, which includes the Gulf Stream,…