Transforming waste heat directly into electricity

BINE Themeninfo brochure entitled "Thermoelectrics: power from waste heat" © BINE Informationsdienst

Thermoelectric generators can utilise the smallest temperature differences

Thermoelectrics works in two directions: it can convert heat directly into electricity or, as a so-called Peltier element, use electrical power to generate cooling energy. Put simply, thermoelectric elements consist of two different conductive materials whose electrical contacts are located in different temperature ranges.

The difference between the two temperatures creates an electrical voltage and thus power. These days the elements are able to generate up to 1,000 watts.

New materials will be able to process larger temperature differences and thus generate even greater outputs. The major advantage of thermoelectric elements is that they work vibration-free, silently and with no moving parts. They therefore require relatively low maintenance and have long service lives.

Until now, thermoelectric elements have been particularly used in aerospace, for example in the Mars rover Curiosity, in energy-autonomous and maintenance-free sensors, for cooling electrical equipment and in silent hotel fridges and camping cool boxes. In future, the elements could play a greater role in the automotive industry, for example for supporting on-board power supplies and for utilising industrial waste heat.

For this BINE Themeninfo brochure, Dr. Jan König from the Fraunhofer Institute for Physical Measurement Techniques coordinated a group of writers working on this topic in German research institutes and companies.

You found all informations about the BINE info brochure “Thermoelectrics: power from waste heat” here:

http://www.bine.info/en/publications/publikation/thermoelektrik-strom-aus-abwaer…

Uwe Milles/Birgit Schneider
presse(at)bine.info

About BINE Information Service

Energy research for practical applications

The BINE Information Service reports on energy research topics, such as new materials, systems and components, as well as innovative concepts and methods. The knowledge gained is incorporated into the implementation of new technologies in practice, because first-rate information provides a basis for pioneering decisions, whether in the planning of energy-optimised buildings, increasing the efficiency of industrial processes, or integrating renewable energy sources into existing systems.

About FIZ Karlsruhe

FIZ Karlsruhe – Leibniz Institute for Information Infrastructure is a not-for-profit organization with the public mission to make sci-tech information from all over the world publicly available and to provide related services in order to support the national and international transfer of knowledge and the promotion of innovation.
Our business areas:
• STN International – the world’s leading online service for research and patent information in science and technology
• KnowEsis – innovative eScience solutions to support the process of research in all its stages, and throughout all scientific disciplines
• Databases and Information Services – Databases and science portals in mathematics, computer science, crystallography, chemistry, and energy technology
FIZ Karlsruhe is a member of the Leibniz Association (WGL) which consists of 87 German research and infrastructure institutions.

http://www.bine.info/en – BINE Informationsdienst

Media Contact

Rüdiger Mack idw - Informationsdienst Wissenschaft

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…