World record: Tandem solar cell achieves 32.5 percent efficiency
Scientists from HZB could significantly improve on the efficiency of perovskite/silicon tandem solar cells. “This is a really big leap forward that we didn’t foresee a few months ago. All the teams involved at HZB, especially the PV Competence Center (PVComB) and the HySPRINT Innovation lab teams have worked together successfully and with passion,” says Prof. Steve Albrecht.
Interface modifications
His team used an advanced perovskite composition with a very smart interface modification. The lead authors, postdocs Dr. Silvia Mariotti, and Dr. Eike Köhnen in Albrecht’s team, developed an interface modification to reduce charge carrier recombination losses and applied detailed analysis to understand the specific properties of the interface modification. These developments were then successfully implemented in tandem solar cells, and with help of Master’s student Lea Zimmermann, combined with further optical improvements.
In addition, many more scientists and technicians helped to develop and fabricate the tandem cells to achieve this success. Altogether, the interface and optical modifications enabled highest photovoltages (open-circuit voltage) and resulted in the new record efficiency for this fascinating tandem technology.
Fast progress
There is an ongoing efficiency development by various research institutes and companies over the last years and especially the last month were quite exciting for the field: Various teams from HZB had achieved a record value in late 2021 with an efficiency of 29.8% that was realized by periodic nanotextures. More recently, in summer 2022, the Ecole Polytechnique Fédérale de Lausanne, Switzerland, first reported a certified tandem cell above the 30% barrier at 31.3%, which is a remarkable efficiency jump over the 2021 value.
With the new certified value of 32.5%, the record is again back at HZB. “We are very excited about the new value as it shows that the perovskite/silicon tandem technology is highly promising for contributing to a sustainable energy supply,” says Albrecht.
HZB’s scientific director, Prof. Bernd Rech, emphasises: “At 32.5 percent, the solar cell efficiency of the HZB tandems is now in ranges previously only achieved by expensive III/V semiconductors. The NREL graph clearly shows how spectacular the last two increases from EPFL and HZB really are.”
Media Contact
Antonia Roetger
Helmholtz-Zentrum Berlin für Materialien und Energie
antonia.roetger@helmholtz-berlin.de
Office: 0049-308-062-43733
Media Contact
All latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…