A new generation of ultra-small and high-precision lasers emerges

Ultra fast, robust, stable, and high precision: these are some of the characteristics of a new laser developed by an international research team. This ultra-small laser paves the way for a new generation of highly powerful, ultra-stable integrated lasers.

Professor Roberto Morandotti and his team at the INRS University's Énergie Matériaux Télécommunications Research Centre played a leading role in the design of this versatile laser that recently made the front page of the prestigious scientific journal Nature Communications.

“We advanced a new approach to develop a laser that boasts as yet unparalleled stability and precision, allowing us to conduct new experiments and open up new realms of research,” said Professor Morandotti, who was elected a fellow by the Optical Society of America and by the International Society for Optics and Photonics (SPIE). “Plus, a multitude of applications may be created in biology, medicine, materials processing, IT, high speed communications, and metrology.”

Flexible and effective, this ultra-small laser stands out for its mode of operation. The researchers developed a ring resonator (a key laser key component) that has the unique feature of playing a dual role by acting both as a filter and a non-linear element. This is the first time researchers have successfully integrated a resonator and a micro-ring in the laser component that makes it possible to better control the light source. It is manufactured using a special glass capable of harnessing the nonlinear optical properties central to laser operation.

For the first time, the researchers tested the filter-driven four-wave mixing method, which presents a number of advantages. Notably the method makes it possible to increase the laser's stability and resistance to external disruptions, increase the amplitude of light pulses while reducing their duration, and emit extremely high quality, high-repetition-rate pulses of up to 200 gigahertz or more, while maintaining a very narrow spectral bandwidth.

Working on Professor Roberto Morandotti's team at INRS, researchers Marco Peccianti and Alessia Pasquazi helped design the operating schematics of the new laser and amplifier, and helped build the prototype. Digital simulations were performed by Pasquazi.

This research benefited from the financial support of the Natural Sciences and Engineering Research Council of Canada, Fonds de recherche du Québec – Nature et technologies (FRQNT), and the Australian Research Council.
The article is available at http://www.nature.com/ncomms/journal/v3/n4/full/ncomms1762.html.

INRS

Institut national de recherche scientifique (INRS) is a graduate and postgraduate research and training university. First in Canada in terms of research intensity (grants per professor), INRS brings together some 150 professors and close to 700 students and postdoctoral fellows in its centres in Montreal, Quebec City, Laval, and Varennes. INRS research teams conduct fundamental research essential to the advancement of science in Quebec as well as internationally and play a critical role in developing concrete solutions to problems facing our society.

Media Contact

Gisèle Bolduc EurekAlert!

More Information:

http://www.inrs.ca

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…