Increasing productivity and optimizing processes when working materials using USP-lasers
Over the past few years, the use of ultrashort pulsed lasers in material processing has been riding a wave of success. Reasons include the laser’s outstanding properties as well as the opportunity to process nearly any type of material with the highest degree of precision.
Because the range of possible applications is continually expanding, market growth currently stands at between 20 and 25 percent per year. Typically, the technology is used in areas such as mould technology, cutting and drilling for micro components, sieves and filters, as well as thin-film coating for solar technologies and the manufacture of OLEDs. When it comes to micro structuring, however, today’s technology has often found itself pushed to its limits from an efficiency standpoint.
Cost-effective microstructuring with USP lasers
Because of these efficiency concerns, the current tool of choice for large-area surface microstructuring is the nanosecond laser (ns laser) – which has firmly established itself on the market thanks to impressive cost-efficiency.
The drawback is that the precision of the microstructuring is limited by the accompanying melt processes; components often require extensive reworking. By contrast, ultrashort pulsed laser produces surface structures that do not require any further processing. They are accurate to within a few micrometers laterally and to within a hundred nanometers in depth.
The dominant role of evaporation in the ablation process with USP lasers means that ablation rates are around a factor of 10 lower than they are with nanosecond lasers. From a business perspective, this has often made using USP lasers to mass produce micro components seem unattractive.
What is more, current USP laser systems generally cannot make use of more than 20 percent of the available laser energy in the 50 to 100 watt power range. In an effort to improve the efficiency of USP lasers in this range, researchers from Fraunhofer ILT have developed a technique that allows laser ablation to run in parallel. This multi-beam technology has now been thoroughly tested and enables the laser beam to be split up into more than 100 beamlets. As a result, a workpiece can be processed at 100 places at once, which speeds up the work process accordingly. The technology means that almost all of the capacity offered by current high-performance USP laser systems can be brought to bear on the workpiece.
An intelligently networked system
Pulsar Photonics GmbH, a Fraunhofer ILT spin-off, has developed a tool system that includes not only intelligent measurement technology but also the option to segment the beam. Beam segmentation essentially boosts the efficiency of workpiece processing itself; the system’s integrated measurement sensors simplify and automate both the definition of parameters during machine preparation and the monitoring of quality once the work has been completed.
As a result, the setup process takes far less time than it otherwise might. For instance, users can conduct initial machine preparation with the part already in the machine because its sensors help them to quickly determine which laser parameters will yield the best processing results. Quality assurance is immediate because the sensors show users how deep the microstructures are or the diameter of the holes drilled. In this way, contract manufacturers can hand the customer verified parts as soon as production is complete. The adaptable USP laser system can also be used for a variety of applications beyond surface structuring, including drilling and cutting by ablation.
Recurring structures and large-scale surface functionalization
Because of its design, the multi-beam technology is primarily suited to the manufacture of components that feature recurring patterns and set structural arrangements, or else for working on several components with the same structure simultaneously. And in many applications, this sort of repeating structure is exactly what is required – such as the large-scale functionalization of surfaces where the aim is to reduce friction or to produce thin-film masks and microfilters.
Hannover Messe
From April 7-11, 2014, the “young innovative companies” joint booth (Hall 17, booth C04/2) at the Hannover Messe will play host to the experts from Pulsar Photonics as they showcase their tool system and multi-beam scanner – now available commercially for the first time. They will be demonstrating how the system complements a range of applications. Scientists from Fraunhofer ILT will be at the joint Fraunhofer production booth (Hall 17/F14) to showcase techniques for functional coating and micro joining as well as to demonstrate the diverse applications of the ultrashort pulsed laser.
International Laser Technology Congress AKL’14
At AKL’14 in Aachen, Dipl.-Ing. Joachim Ryll of Pulsar Photonics GmbH will give a talk on how to improve efficiency when working materials using USP lasers by ensuring the best possible system setup. The talk will form part of the session “Ultrashort pulsed laser essentials – applications” and will take place on May 9, 2014.
About Pulsar Photonics GmbH
Founded in 2013, Pulsar Photonics GmbH is a technology-focused spin-off of the Fraunhofer Institute for Laser Technology ILT. The company’s services focus on the development and sales of integrated tool and measurement systems for material processing using short and ultra-short pulsed lasers.
Contact
Dipl.-Phys. Stephan Eifel
Pulsar Photonics GmbH
Phone +49 241 8906-8079
eifel@pulsar-photonics.de
Steinbachstraße 15
52074 Aachen, Germany
http://www.pulsar-photonics.com
http://www.lasercongress.org
http://www.ilt.fraunhofer.de
Media Contact
All latest news from the category: Process Engineering
This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).
Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…