Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Pressure relief for jet engines – Photon02

The aerodynamics inside jet engines are not completely understood due to the unpredictable nature of the air flowing through the turbine. However, a research team led by Dr Jim Barton from Heriot-Watt University, has developed tiny fibre optic pressure sensors that can for the first time be used inside jet engine test rigs. These sensors should allow engineers to collect data that will enable them to make more aerodynamic engines, which will improve fuel efficiency and engine performance, ensuring lo

Fingerprint recognition gets true `Fingerspitzengefühl`

Will we pay using our fingerprint, or enter a building just touching a sensor? Does our mobile phone recognize our fingerprint? It is possible, as far as Dutch PhD student Asker Bazen is concerned. He has improved the verification techniques, resulting in a better result even for deformed and damaged prints. Together with a higher speed, the new methods can take away existing reserves for implementing fingerprint verification. Bazen is finishing his PhD research at the faculty of Electrical Engineeri

Researchers develop ’fingerprinting’ for biological agents

Scientists at Northwestern University have developed a powerful new method for detecting infectious diseases, including those associated with many bioterrorism and warfare threats such as anthrax, tularemia, smallpox and HIV.

A research team led by Chad A. Mirkin, director of Northwestern’s Institute for Nanotechnology, has invented a technique for creating thousands of DNA detection probes made of gold nanoparticles with individual molecules attached. Much like human fingerprints, the

Hope for nano-scale delivery of medicine using a light beam to move liquid through tiny tubes

Medical researchers would like to use nano-scale tubes to push very tiny amounts of drugs dissolved in water to exactly where they are needed in the human body.

The roadblock to putting this theory into practical use has been the challenge of building pumps small enough to do the job. In addition to the engineering challenge of building a nano-scale pump, there is the added complication of clogging by any biological molecule that can occur in valves small enough to fit a channel the size of

’Nanoantennas’ could bring sensitive detectors, optical circuits

Researchers have shown how tiny wires and metallic spheres might be arranged in various shapes to form “nanoantennas” that dramatically increase the precision of medical diagnostic imaging and devices that detect chemical and biological warfare agents.

Engineers from Purdue University have demonstrated through mathematical simulations that nanometer-scale antennas with certain geometric shapes should be able to make possible new sensors capable of detecting a single molecule of a chemical or

New way to make dense complex-shaped ceramics at lower cost

A new way researchers have developed to make dense ceramics in complex shapes could lead to light, tough, and hard ceramic parts at lower cost.

The recently patented technique, called “displacive compensation of porosity,” or DCP, uses a chemical reaction between molten metal and a porous ceramic to generate a new composite material. The technique fills the tiny pores inside the ceramic with additional ceramic material. The resulting super-dense part retains the shape of the original ceramic

Page
1 99 100 101 102 103 106