Purifying dairy wastewater – at the same time producing electricity

The wastewater discharged from the production of dairy products such as cheese, quark and yoghurt typically contain lactose, proteins and milk fats as well as surfactants and disinfectants from cleaning the production plants.

Cheese production also results in whey, a watery solution, which besides milk proteins contains mainly lactose. The disposal of this wastewater is very cost-intensive due to the high chemical and biological oxygen demand. Large dairies typically treat their wastewater in large-scale biological wastewater treatment plants. However for many, especially small and medium-sized enterprises, the investments in such solutions are prohibitively expensive.

In the EU-funded project REWAGEN a project consortium with business and research partners – led by the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart – is therefore developing a multistage process for the efficient electrochemical treatment of dairy effluents and whey. The modular design will make it possible to adapt the system flexibly to the varying amount of wastewater at smaller dairies.
“Here, the various steps in the process are combined and integrated into a compact system. The aim is that each step in the process should provide a substance flow that can be further processed or fed back into the system,” explains Alexander Karos, Project Manager at the Fraunhofer IGB. The purified water can be re-used directly, for example to clean the plants.

The hydrogen generated as a by-product from the electrolysis of the water will also be used – to supply the plant with electricity. “We want to separate and purify the hydrogen so that we can use it in a fuel cell to supply power to the system,” says Karos, describing the new approach.

“To purify the wastewater we favour electrochemical processes because, in this way, we can prevent the addition of chemicals and the related increased salinity of the water,” Karos points out. To achieve this the researchers aim to combine four different electrochemical processes. In a first step oils and fats will be separated using the process of pulsed electrocoalescence: Dispersed droplets of oil move around in the alternating electric field due to their surface charge and merge to form larger drops of oil that can be separated mechanically. Particulate impurities are separated in the subsequent step by means of electroflocculation. “Here we make use of iron electrodes that release iron ions into the water and react there forming iron hydroxide floccules. With these floccules we capture and precipitate organic solids,” Karos adds. In a third electrochemical cell, dissolved organic components are degraded by electrooxidative processes, for example by means of a diamond electrode. And finally in a fourth stage with capacitive deionization, dissolved salts are removed by concentrating them by a correspondingly charged electrode and precipitating them.

The REWAGEN project “Electrochemical WAter treatment system in the dairy industry with hydroGEN REcovery and electricity production” is being funded for four years within the scope of the 7th Framework Research Programme under the Grant Agreement Number 283018. Besides the Fraunhofer IGB the research partner is Leitat (Spain). Participating industrial partners, all in the size of small and medium-sized enterprises (SMEs) are HyGear (Netherlands), Aqon (Germany), Idropan Dell Orto Depuratori (Italy), Productes El Canadell (Spain), C-Tech Innovation (UK), ISA – Intelligent Sensing Anywhere (Portugal), Eilenburger Elektrolyse- und Umwelttechnik (Germany) and Knowledge Innovation Market (Spain).

Contact
Dipl.-Ing. Siegfried Egner, Phone +49 711 970-3643
Alexander Karos M.Sc., Mobile +49 172 7148215

Media Contact

Dr. Claudia Vorbeck Fraunhofer-Institut

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

Cancer predisposition syndromes in children and adolescents.

Decoding Cancer: 40 Years of Breakthroughs in Genetic Research

Cancer in children and adolescents is rare. Nevertheless, malignant diseases are still one of the most common causes of death in this age group. Survivors of childhood or adolescent cancer…

Brain structure differences in adolescents at risk of early substance initiation

Let’s Think Before the First Drink: How Early Substance Use Might Lead to Brain Structure Differences Among Adolescents

Many differences appeared to exist prior to any substance use, pointing to the role brain structure may play in substance use risk, NIH-supported study suggests. Studies reveal factors that expose…

Innovative immunotherapy strategies for improving kidney cancer detection and treatment.

Combating Kidney Cancer Using Enhanced Immunotherapies

Medical University of South Carolina Hollings Cancer Center researcher receives Department of Defense Early Career Scholar Award to improve immune therapies by targeting resistant kidney tumors. A Medical University of…