Remote laser cutting of sheet metal with highly brilliant beam sources
On Stand E16 in Hall 6 at the Hannover Fair (MicroNanoTec, April 19 – 23, 2010) the Fraunhofer ILT is showcasing a laser system for remote fine cutting. The Aachen-based research engineers will demonstrate live how the system can be used to cut 0.2 mm-thick steel sheets in seconds.
Fitted with a 1 kW single mode fiber laser and a mirror scanner, the unit can machine components in the millimeter range at cycle times of less than 100 ms. This short processing time is achieved by dispensing with mechanical movement axes. Beam movement is performed by mirrors mounted on highly dynamic galvanometer drives. Cuts of 20 µm are achieved with suitable optical systems, so that precision parts, such stator sheets for electric motors, can be processed rapidly and accurately.
Cost advantages and flexibility for small series
Fine cutting with remote laser is particularly interesting as a means to save costs in the production of prototypes and small series, because it offers much greater flexibility and freedom with regard to component geometry than conventional methods such as milling or punching. Expensive tool changes are not required.
Combined punching-bending processes are a good example. In this case, the punch geometry must first be iteratively matched to the bending process. In conventional production methods the manufacture and adaptation of the punching tools entails high costs and long waiting times. Remote laser cutting offers the advantage that the component geometry can be optimized, within a very short time and at virtually no cost, to achieve the desired shape. In contrast to conventional punching systems, the laser unit is ready to use straightaway. There are no long lead times. Remote laser cutting thus makes it possible to shorten development times and increase process flexibility while reducing costs.
The research engineers based in Aachen are able to put together an installation to match the needs of the specific process by combining predefined modules. A suitable optical system with matching laser beam source is integrated in a machine housing and, if necessary, fitted with additional sensors or a clamping device. The system can be used for inscribing, plastic welding, microstructuring, remote laser cutting and metal welding.
Contacts at the Fraunhofer ILT
Our experts will be pleased to assist if you have any questions:
Dr.-Ing. Jens Holtkamp
Expert Group Ablation and Joining
Phone +49 241 8906-273
jens.holtkamp@ilt.fraunhofer.de
Dr.-Ing. Arnold Gillner
Manager of Expert Group Ablation and Joining
Phone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121
Media Contact
More Information:
http://www.ilt.fraunhofer.deAll latest news from the category: Process Engineering
This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).
Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…