New Technology For Aluminium Laser Welding

Russian scientists of the Kovrov State Technology Academy have proposed a new technology for aluminium alloy welding based on using of two lasers. The first laser removes the oxide film by small portions from the surface of welded components, and the second laser executes the welding. Although the first phase lasts for about one millionth of a second, it is very important, since the refractory oxide film deteriorates the welding strength. The new method is also characterized by one more benefit: the place the juncture is covered with a thin film of molten metal increasing the efficiency of laser beam. The film also retains tiny particles, which erupt from the metal in the course of welding and increases the maximal welding depth.

The new laser device consists of two modified lasers, the mirror system and the lens, which focuses the emission on the welding area. The radius of laser beam which performs welding makes 0.3 millimeters. The welding rate was equal to 30 millimeters per minute.

The scientists have experimentally compared the new welding technology with the common one, where only one laser is used. The experiments have proved that a new method provides for twice or thrice higher depth of welding. In addition, the quality of seams (judging by the so-called ’’’’porosity of weld’’’’) increases twice, thus improving the product strength.

The issue of non-ferrous metals laser welding is rather critical. This is due to the fact that utilization of light alloys of aluminium is becoming more and more profitable. Therefore, ferrous metal is gradually replaced by non-ferrous one. However, the quality of aluminium welding by laser has not been satisfactory so far. Probably, the new technology would solve the problem.

By now, more than 100 thousand laser application areas are known. The Russian scientists appear to have discovered one more area.

Media Contact

Mr. Andrey Siver alfa

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

Future AR/VR controllers could be the palm of your hand

Carnegie Mellon University’s EgoTouch creates simple interfaces for virtual and augmented reality. The new generation of augmented and virtual reality controllers may not just fit in the palm of your…

‘Game changer’ in lithium extraction

Rice researchers develop novel electrochemical reactor. A team of Rice University researchers led by Lisa Biswal and Haotian Wang has developed an innovative electrochemical reactor to extract lithium from natural…

The blue-green sustainable proteins of seaweed

… may soon be on your plate. The protein in sea lettuce, a type of seaweed, is a promising complement to both meat and other current alternative protein sources. Seaweed…