You can’t tell a rock by its rind: How a tiny abrasion tool will help reveal geology of Mars
Facelifts can sag. Botox is temporary. But modern science has a new way to return youth to weathered faces: the rock abrasion tool (RAT). If your dermatologist hasnt heard of it, ask your local Mars scientist.
Billions of years of exposure to the sun, atmosphere and extremely fine Martian dust has given Mars rocks a weathered “rind,” or exterior layer. The RAT, part of the science-instrument package carried by the two Mars rovers, Spirit and Opportunity, uses a diamond-tipped robotic grinding tool to scrape away this weathered exterior, revealing a fresh surface.
“Clearing away the dust and a weathered layer gives the science instruments access to the part of the rock that hasnt changed since it was formed billions of years ago,” says Cornell University alumnus Paul Bartlett. An employee of New York engineering firm Honeybee Robotics, Bartlett has been working on the RAT since the first concept drawings from Cornell professor of astronomy Steven Squyres arrived in his fax machine three years ago.
Spirit is scheduled to land on Mars on Jan. 3 at 11:35 p.m. EST. Opportunity will touch down on Jan. 25 at 12:05 a.m. EST.
The Jet Propulsion Laboratory in Pasadena, a division of the California Institute of Technology, manages the Mars Exploration Rover project for NASAs Office of Space Science, Washington, D.C. Cornell, in Ithaca, N.Y., is managing the science instruments carried by the two rovers, with Squyres as principal investigator.
Access to the pristine rock interior is critical to understanding the history of the geology of Mars and to answering what Bartlett describes as the “big questions” to be solved by the rovers: Did water — or even an environment suitable for life — once exist on the red planet?
These big questions might be answered by a very small machine: The RAT weighs only 1 1/2 pounds and uses less power (30 watts) than most light bulbs. It is about the size of a soda can.
The RAT occupies the turret, or “hand,” of the rovers robotic arm, along with other rover science instruments for rock analysis, a microscopic imager and Mössbauer and alpha particle X-ray spectrometers. The agile arm, which has shoulder, elbow and wrist joints just like a human arm, presses the RAT up against a rocks surface.
In just two hours, the RATs grinding wheel can shave off a disk about twice the diameter and thickness of a nickel from a hard rock surface. Two brushes sweep the resulting dust away from the hole to provide a clean surface for an up-close view.
Once the fresh surface is exposed, the imager and the spectrometers take over, peering through the abraded opening to perform a detailed analysis of the rocks interior. So that scientists can learn about the processes that might have weathered the rock, the rover also records temperature and current readings from the RATs three motors while they grind away the exterior layer.
Bartlett notes that the breadth of his work on the RAT, which spans design, fabrication, assembly, testing and mission operations, “is a rare opportunity in engineering.”
And working with Mars scientists also has stood out among his other assignments for Honeybee. One was building a robot for an art installation at Manhattans Whitney Museum of American Art. He discovered, he says, that “planetary scientists and avant-garde architects speak very different languages.”
This release was prepared by Cornell News Service science-writer intern Kate Becker
Media Contact
More Information:
http://www.news.cornell.edu/releases/Dec03/Mars.RAT.deb.htmlAll latest news from the category: Process Engineering
This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).
Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.
Newest articles
Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans
The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…
You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation
The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…
Trust Your Gut—RNA-Protein Discovery for Better Immunity
HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…