UF researchers shine light on new explosives detection method
A team of University of Florida researchers has invented a way to rapidly detect traces of TNT or other hidden explosives simply by shining a light on any potentially contaminated object, from a speck of dust in the air to the surface of a suitcase. “We have to find explosives quickly, inexpensively and, particularly, reliably,” said Rolf Hummel, a UF professor emeritus of materials science and engineering who heads the lab where the method was invented.
The development provides instantaneous results, gives no false positives, can be used remotely and is portable — attributes he says will make it indispensable at all levels of law enforcement, from local police to homeland security.
The method uses photoluminescence spectroscopy, a technique that casts light on a material and measures the range and intensity of the wavelengths of light the material produces in response. The wavelength of the emitted light varies depending on the chemical structure of the material.
Using photoluminescence to reveal the presence of TNT is similar to how “black light” uses ultraviolet radiation to make white clothes glow, but in this case the black light is a laser, Hummel said. “Once you shine a laser at the sample, the laser then re-emits (it) at specific wavelengths that are different for each material — its a kind of a fingerprint.”
TNTs fingerprint is a sharp, distinct photoluminescent peak at a specific wavelength within the electromagnetic spectrum, the researchers discovered. The electromagnetic spectrum encompasses the entire range of light and sound waves, from long-wavelength radio waves to short-wavelength gamma rays. The peak occurs just outside the longer-wavelength, or red, portion of the spectrum that includes visible light. TNT shares this characteristic peak with other explosive materials, such as plastic explosives and nitroglycerin, but not with safe materials.
The key to this common attribute, Hummel said, lies in the explosives chemical makeup — they all contain at least two “nitro groups,” molecules made up of one nitrogen atom bound to two oxygen atoms. The peak is a narrow spectral line and would be easy to miss if you dont know where in the spectrum to search, Hummel said.
The UF discovery of TNTs signal was prompted by a request from the U.S. Army Research Office that challenged universities to find a way to make inexpensive, quick and reliable explosive-detection systems. Out of curiosity, one of Hummels graduate students tested TNT in the labs photoluminescence spectrometer. With its high resolution, the machine scanned across the entire light spectrum and caught the explosives elusive signal. “Thats why we detected it the first time,” Hummel said.
“This is a very complex phenomenon,” said Chuck Schau, a scientist at Raytheon Missile Systems Radiation Technology Laboratory who also was conducting experiments on explosive detection using photoluminescence but initially did not observe the TNT peak discovered by the UF team. Raytheon is now interested in following up on this discovery, he said. That development may include a future for this detection technology that goes beyond airport lines and into uncovering dangerous materials on a much larger scale — though that technology may be years away.
“If I see a ship approaching, Id like to know if its packed with explosives,” Schau said. Its in the field of remote detection that this is exciting. This really looks like it may give us a leg up on that.”
Sample collection for explosives is familiar to anyone who has recently passed through an airport: a swab brushed across an object, such as a suitcase, clothing or even a person, or puffs of air blasted across a filter that can trap tiny amounts of airborne explosives. The advantage of photoluminescence-based explosive detection is that it can be remotely applied, and requires neither time-consuming and expensive machines nor trained dogs, said Hummel, who has applied for a patent on the technique.
“My major aim is that I would like to help and make a contribution towards secure life, airports and transportation,” he said. “Just shine a laser on a car, ship or person and see if that specific wavelength comes back — thats my goal.”
Media Contact
More Information:
http://www.ufl.eduAll latest news from the category: Process Engineering
This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).
Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…