Liquid crystal multilayer study promises improvements in manufacturing techniques for LCD’s
Surface alignment of liquid crystal multilayers evaporated on a photoaligned polyimide film observed by surface profiler
In order to successfully fabricate a commercial Liquid Crystal Display, uniform orientation of the liquid crystal (LC) molecules is required. Traditionally this molecular alignment of liquid crystal is achieved by physically or chemically treating the surface. A simple method used to achieve preferred orientation is rubbing but this may produce dust, static charging and mechanical damage which deteriorates the production yield.
One of the more attractive alternatives to rubbing is the generation of a surface anisotropy of an alignment film by photochemical reaction called “photoinduced alignment”. In general, photoinduced alignment is achieved by exposing with both unpolarized and polarized ultraviolet (UV) light on a photoalignment polymer film.
In this study published under AZojomo*, by Thet Naing Oo, Tetsuya Iwata, Munehiro Kimura and Tadashi Akahane from Nagaoka University of Technology and Core System Co. Ltd, investigated of the surface alignment of liquid crystal multilayers evaporated on a photoaligned polyimide vertical alignment (PI–VA) film was carried out by means of a novel three–dimensional (3–D) surface profiler.
The photoinduced anisotropy of the partially UV–exposed PI–VA film can be visualized as a topological image of LC multilayers. It seems that the topology of LC multilayers indicates the orientational distribution of LC molecules on the treated film. Moreover, it was shown that the surface profiler can be used to produce non–contact images with high vertical resolution (~ 0.01 nm).
It is anticipated that this work will be a considerable aid to the manufacturers of liquid crystal displays (LCDs) across the range of LCD production from televisions to computer screens.
Media Contact
More Information:
http://www.azom.comAll latest news from the category: Process Engineering
This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).
Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.
Newest articles
Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans
The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…
You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation
The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…
Trust Your Gut—RNA-Protein Discovery for Better Immunity
HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…