Scientists Create Carbon Nanothermometer
Scientists continue to create new uses for carbon nanotubes, those tiny cylinders comprised of pure carbon. A paper published today in the journal Nature describes a thermometer made out of a column of carbon just 10 micrometers long. According to the report, the nanodevice can measure temperatures between 50 and 500 degrees Celsius and “should be suitable for use in a wide variety of microenvironments.”
Yihua Gao and Yoshio Bando of the National Institute for Materials Science in Ibaraki, Japan, filled nanotubes less than 150 nanometers in diameter with a one-dimensional column of liquid gallium. In larger quantities, liquid gallium has one of the widest temperature ranges of any metal, spanning 30 to 2,403 degrees C. The researchers determined that nanoquantities of the metal behave similarly and that the liquids behavior within the tube changes predictably with temperature.
Like the mercury in a conventional thermometer, the minuscule meniscus in the nanodevice moves up and down as the gallium expands and contracts in response to temperature. Gao and Bando suggest the new nanothermometer will extend temperature measurements in very small systems beyond the four to 80 kelvins range that current electronic-based devices can achieve.
Media Contact
All latest news from the category: Process Engineering
This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).
Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…