Engine Helps Satellites Blast Off With Less Fuel

Georgia Tech researchers have developed a new protoype engine that allows satellites to take off with less fuel, opening the door for deep space missions, lower launch costs and more payload in orbit.

The efficient satellite engine uses up to 40 percent less fuel by running on solar power while in space and by fine-tuning exhaust velocity. Satellites using the Georgia Tech engine to blast off can carry more payload thanks to the mass freed up by the smaller amount of fuel needed for the trip into orbit. Or, if engineers wanted to use the reduced fuel load another way, the satellite could be launched more cheaply by using a smaller launch vehicle.

The fuel-efficiency improvements could also give satellites expanded capabilities, such as more maneuverability once in orbit or the ability to serve as a refueling or towing vehicle.

The Georgia Tech project, lead by Dr. Mitchell Walker, an assistant professor in the Daniel Guggenheim School of Aerospace Engineering, was funded by a grant from the U.S. Air Force. The project team made significant experimental modifications to one of five donated satellite engines from aircraft engine manufacturer Pratt & Whitney to create the final prototype.

The key to the engine improvements, said Walker, is the ability to optimize the use of available power, very similar to the transmission in a car. A traditional chemical rocket engine (attached to a satellite ready for launch) runs at maximum exhaust velocity until it reaches orbit, i.e. first gear.

The new Georgia Tech engine allows ground control units to adjust the engine’s operating gear based on the immediate propulsive need of the satellite. The engine operates in first gear to maximize acceleration during orbit transfers and then shifts to fifth gear once in the desired orbit. This allows the engine to burn at full capacity only during key moments and conserve fuel.

“You can really tailor the exhaust velocity to what you need from the ground,” Walker said.

The Georgia Tech engine operates with an efficient ion propulsion system. Xenon (a noble gas) atoms are injected into the discharge chamber. The atoms are ionized, (electrons are stripped from their outer shell), which forms xenon ions. The light electrons are constrained by the magnetic field while the heavy ions are accelerated out into space by an electric field, propelling the satellite to high speeds.

Tech’s significant improvement to existing xenon propulsion systems is a new electric and magnetic field design that helps better control the exhaust particles, Walker said. Ground control units can then exercise this control remotely to conserve fuel.

The satellite engine is almost ready for military applications, but may be several years away from commercial use, Walker added.

Related Links
Daniel Guggenheim School of Aerospace Engineering
http://www.ae.gatech.edu/
Dr. Mitchell Walker
http://www.ae.gatech.edu/people/mwalker/
The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked eighth among U.S. News & World Report's top public universities, Georgia Tech's 17,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

Media Contact

Megan McRainey EurekAlert!

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

Chimpanzee in a tropical forest demonstrating genetic adaptations for survival.

Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans

The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…