Structural color ink: Printable, non-iridescent and lightweight

A single layer of silicon nanospheres produces bright structural colors that are independent of the viewing angle. The color can be controlled by the diameter of the spheres, where smaller particles are bluer and larger ones redder.
Credit: FUJII Minoru

A new way of creating color uses the scattering of light of specific wavelengths around tiny, almost perfectly round silicon crystals. This Kobe University development enables non-fading structural colors that do not depend on the viewing angle and can be printed. The material has a low environmental and biological impact and can be applied extremely thinly, promising significant weight improvements over conventional paints.

An object has color when light of a specific wavelength is reflected. With traditional pigments, this happens by molecules absorbing other colors from white light, but over time this interaction makes the molecules degrade and the color fades. Structural colors, on the other hand, usually arise when light is reflected from parallel nanostructures set apart at just the right distance so that only light of certain wavelengths will survive while others are cancelled out, reflecting only the color we see. This phenomenon can be seen in wings of butterflies or feathers of peacocks, and has the advantage that the colors don’t degrade. But from an industrial point of view, neatly arranged nanostructures cannot be painted or printed easily, and the color depends on the viewing angle, making the material iridescent.

Kobe University material engineers FUJII Minoru and SUGIMOTO Hiroshi have been developing an entirely new approach to producing colors. They explain, “In previous work since 2020, we were the first to achieve precise particle size control and develop colloidal suspensions of spherical and crystalline silicon nanoparticles. These single silicon nanoparticles scatter light in bright colors by the phenomenon of ‘Mie resonance,’ which allows us to develop structural color inks.” With Mie resonance, spherical particles of a size comparable to the wavelength of light reflect specific wavelengths particularly strongly. This means that the color that mainly comes back from the suspension can be controlled simply by varying the size of the particles.

In their work now published in the journal ACS Applied Nano Materials, Fujii and Sugimoto demonstrate that the suspension can be applied to surfaces and will thus coat the underlying material in a form of structural color that does not depend on the viewing angle. This is because the color is not produced by the interaction of light reflected from neighboring structures as with “traditional” structural colors, but by its highly efficient scattering around individual nanospheres. Sugimoto explains another advantage: “A single layer of sparsely distributed silicon nanoparticles with a thickness of only 100-200 nanometers shows bright colors but weighs less than half a gram per square meter. This makes our silicon nanospheres one of the lightest color coats in the world.”

The Kobe University team used computational simulations to explore the properties of the ink under different circumstances, such as by varying the size of the particles and the distance between them, and then confirmed their results experimentally. They found that, contrary to intuition, the reflectance was highest when the individual particles were separated instead of when tightly packed. The authors explain, “This high reflectance despite small coverage of the surface by the nanospheres is due to the very large scattering efficiency. The requirement of a very small amount of silicon crystals for coloration is an advantage in the application as a color pigment.”

After further development and refinements, they are expecting interesting applications of their technology. Sugimoto explains, “We can apply it to the coating of, for example, airplanes. The pigments and coatings on an airplane have a weight of several hundreds of kilograms. If we use our nanosphere-based ink, we might be able to reduce the weight to less than 10% of that.”

This work was partially supported by JSPS KAKENHI grants 18KK0141, 21H01748, 21H01782 and 22K18949, the JST FOREST Program grant JPMJFR213L and the JST START University Promotion Type grant JPMJST2051 (Kobe University GAP fund).

Kobe University is a national university with roots dating back to the Kobe Commercial School founded in 1902. It is now one of Japan’s leading comprehensive research universities with nearly 16,000 students and nearly 1,700 faculty in 10 faculties and schools and 15 graduate schools. Combining the social and natural sciences to cultivate leaders with an interdisciplinary perspective, Kobe University creates knowledge and fosters innovation to address society’s challenges.

Journal: ACS Applied Nano Materials
DOI: 10.1021/acsanm.3c04689
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Monolayer of Mie-Resonant Silicon Nanospheres for Structural Coloration.
Article Publication Date: 30-Jan-2024

Media Contact

Daniel Schenz
Kobe University
gnrl-intl-press@office.kobe-u.ac.jp
Office: +81-78-803-5160
 @KobeU_Global

Expert Contacts

Professor FUJII Minoru
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University
fujii@eedept.kobe-u.ac.jp
Office: +81-78-803-6081

Associate Professor SUGIMOTO Hiroshi
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University
sugimoto@eedept.kobe-u.ac.jp
Office: +81-78-803-6441

Media Contact

Daniel Schenz
Kobe University

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…