Accounting for short-lived forcers in carbon budgets
Limiting warming to any level requires CO2 emissions to be kept to within a certain limit known as a carbon budget. Can reducing shorter-lived climate forcers influence the size of this budget? A new IIASA study published in the journal Environmental Research Letters analyzes the impact of short-lived air pollutant and greenhouse gas reductions on carbon budgets compatible with the 2°C climate target.
Short-lived greenhouse gases and atmospheric pollutants—including methane, hydrofluorocarbons (HFCs), black carbon or soot, and sulfates— are emitted by human activities and also contribute to climate change, but remain in the atmosphere for a much shorter time than carbon dioxide (CO2).
Some of these emissions, such as methane have a strong warming effect, while others act to cool the atmosphere, making their role in climate change mitigation complicated to nail down.
“To limit global warming to any level, the total amount of carbon-dioxide emissions needs to be limited to a certain budget,” says Rogelj. “We knew that warming from non-CO2 gases like methane or some air pollutants, can influence the size of this carbon budget. The question was, how much?”
The study examines how stringently reducing each climate forcer separately would affect the size of the carbon budget. The researchers found that reducing methane emissions stringently in the second half of the century could increase the size of the carbon budget for meeting the 2°C target by 2100 by about 20%. In the long term, CO2 emissions thus still need to reach net zero. Strict controls on pollutants such as black carbon, by contrast, had only a small impact on the carbon budget of around 5%.
The new study is the first to quantify the influence of non-CO2 emissions reductions for future global carbon budgets.
“Our findings are important from a policy perspective. The pressure on the 2°C compatible CO2 budget will be extremely high if we are not successful in mitigating non-CO2 emissions for example from meat and rice production,” says IIASA Energy Program Director Keywan Riahi, a co-author on the study. “Hedging against these risks requires us to not put all of our eggs into one basket, and instead to pursue stringent reductions of CO2 in combination with efforts to limit non-CO2 emissions.”
IIASA research has shown that climate and air pollution are closely linked from an economic and policy standpoint, and addressing both together could bring joint benefits for health and environment at a fraction of the cost. For example, a recent study led by
Rogelj quantified how actions to reduce CO2 emissions would also lead to reduced SLCP emissions, because CO2 and some SLCPs are emitted by the same sources, for example diesel engines which emit both CO2 and black carbon. Yet, the other way around, air pollution measures alone would not reduce carbon dioxide emissions.
The new study takes that research a step further and applies it to carbon budgets. It provides a quantitative scenario analysis of how reductions of black carbon, methane, HFCs, sulfur dioxide and nitrogen dioxide can complement and help the transition to a zero-carbon future.
Reference
Joeri Rogelj, Malte Meinshausen, Michiel Schaeffer, Reto Knutti, and Keywan Riahi, 2015. Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming Environ. Res. Lett. 10 075001 doi:10.1088/1748-9326/10/7/075001
Background: IIASA research on air pollution and climate change
IASA research has shown that climate and air pollution are closely linked from an economic and policy standpoint, and addressing both together could bring joint benefits for health and environment at a lower cost than addressing these issues separately.
See the references below for more on the topic:
Joeri Rogelj, Andy Reisinger, David L. McCollum, Reto Knutti, Keywan Riahi, Malte Meinshausen, 2015. Mitigation choices impact carbon budget size compatible with low temperature goals. Environ. Res. Lett. 10 075003 doi:10.1088/1748-9326/10/7/075003
Joeri Rogelj, Michiel Schaeffer, Malte Meinshausen, Drew T. Shindell, William Hare, Zbigniew Klimont, Guus J. Velders, Markus Amann, John Schellnhuber, 2014. Disentangling the effects of CO2 and short-lived climate forcer mitigation. Proc. Natl. Acad. Sci. USA 111 16325-16330 doi:10.1073/pnas.1415631111
Drew T. Shindell, et al., 2012. Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security. Science 335 183-189 doi:10.1126/science.1210026
For more information contact:
Joeri Rogelj
Research Scholar
IIASA Energy Program
+43(0) 2236 807 393
rogelj@iiasa.ac.at
Keywan Riahi
Program Director
IIASA Energy Program
+43(0) 2236 807 491
riahi@iiasa.ac.at
Katherine Leitzell
IIASA Press Office
Tel: +43 2236 807 316
Mob: +43 676 83 807 316
leitzell@iiasa.ac.at
About IIASA:
The International Institute for Applied Systems Analysis (IIASA) is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policy makers to shape the future of our changing world. IIASA is independent and funded by scientific institutions in Africa, the Americas, Asia, Oceania, and Europe. www.iiasa.ac.at
Weitere Informationen:
Media Contact
More Information:
http://www.iiasa.ac.atAll latest news from the category: Studies and Analyses
innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…