Brain waves behind indecisiveness
It’s the same old story: You’re in a restaurant and can’t make up your mind what to order. After studying the menu for some time and many discussions, you eventually choose the steak. But you can’t relax during the meal and keep wondering whether you should have gone for the veal after all.
Such difficulties with decisions crop up in all aspects of life, not only food. However, they predominantly affect preference-based decisions, i.e. questions like «what do I prefer – melon or cherries?» Purely sensory decisions based on sensorial information such as «what is bigger – melon or cherry?» are less prone to indecisiveness.
The more intensive the information flow, the more decisive
How come some people are so uncertain of their preferences and keep making new choices while others know exactly what they like and want? A team headed by Professor Christian Ruff, a neuroeconomist from the University of Zurich, set about investigating this question.
The Zurich researchers discovered that the precision and stability of preference decisions do not only depend on the strength of the activation of one or more brain regions. Instead, the key for stable preference choices is the intensity of the communication between two areas of the brain which represent our preferences or are involved in spatial orientation and action planning.
The researchers used transcranial alternating current stimulation, a non-invasive brain stimulation method that enables generation of coordinated oscillations in the activity of particular brain regions. The test subjects did not realize that they were being stimulated.
Using this technique, the researchers intensified or reduced the information flow between the prefrontal cortex located directly below the forehead and the parietal cortex just above both ears. The test subjects had to make preference-based or purely sensory decisions about food.
«We discovered that preference-based decisions were less stable if the information flow between the two brain regions was disrupted. Our test subjects were therefore more indecisive. For the purely sensory decisions, however, there was no such effect,» explains Ruff. «Consequently, the communication between the two brain regions is only relevant if we have to decide whether we like something and not when we make decisions based on objective facts.» There was no evidence of any gender-specific effects in the experiments.
It was not possible to make the decisions more stable by intensifying the information flow. However, the study participants were young, healthy test subjects with highly developed decision-making skills. On the other hand, the results of the study could be used for therapeutic measures in the future – such as in patients who suffer from a high degree of impulsiveness and indecisiveness in the aftermath of brain disorders.
Literature:
Rafael Polanıa, Marius Moisa, Alexander Opitz, Marcus Grueschow & Christian C. Ruff. The precision of value-based choices depends causally on fronto-parietal phase coupling. Nature communications, August 20, 2015. DOI: 10.1038/ncomms9090
http://www.mediadesk.uzh.ch/articles/2015/fuer-wankelmuetigkeit-sind-die-hirnstr…
Media Contact
All latest news from the category: Studies and Analyses
innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…